Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis

Brain. 2018 Jul 1;141(7):2213-2224. doi: 10.1093/brain/awy133.

Abstract

While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Corpus Striatum / metabolism
  • Dopamine / metabolism
  • Female
  • Humans
  • Male
  • Positron-Emission Tomography / methods
  • Prefrontal Cortex / metabolism*
  • Psychotic Disorders / metabolism
  • Psychotic Disorders / physiopathology
  • Receptors, Dopamine D2 / metabolism*
  • Risk Factors
  • Schizophrenia / metabolism*
  • Schizophrenia / physiopathology
  • Stress, Physiological / physiology
  • Young Adult

Substances

  • DRD2 protein, human
  • Receptors, Dopamine D2
  • Dopamine

Grants and funding