Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice

Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7991-7996. doi: 10.1073/pnas.1803792115. Epub 2018 Jul 16.

Abstract

Rett syndrome (RTT) is a genetic disorder resulting from a loss-of-function mutation in one copy of the X-linked gene methyl-CpG-binding protein 2 (MECP2). Typical RTT patients are females and, due to random X chromosome inactivation (XCI), ∼50% of cells express mutant MECP2 and the other ∼50% express wild-type MECP2. Cells expressing mutant MECP2 retain a wild-type copy of MECP2 on the inactive X chromosome (Xi), the reactivation of which represents a potential therapeutic approach for RTT. Previous studies have demonstrated reactivation of Xi-linked MECP2 in cultured cells by biological or pharmacological inhibition of factors that promote XCI (called "XCI factors" or "XCIFs"). Whether XCIF inhibitors in living animals can reactivate Xi-linked MECP2 in cerebral cortical neurons, the cell type most therapeutically relevant to RTT, remains to be determined. Here, we show that pharmacological inhibitors targeting XCIFs in the PI3K/AKT and bone morphogenetic protein signaling pathways reactivate Xi-linked MECP2 in cultured mouse fibroblasts and human induced pluripotent stem cell-derived postmitotic RTT neurons. Notably, reactivation of Xi-linked MECP2 corrects characteristic defects of human RTT neurons including reduced soma size and branch points. Most importantly, we show that intracerebroventricular injection of the XCIF inhibitors reactivates Xi-linked Mecp2 in cerebral cortical neurons of adult living mice. In support of these pharmacological results, we also demonstrate genetic reactivation of Xi-linked Mecp2 in cerebral cortical neurons of living mice bearing a homozygous XCIF deletion. Collectively, our results further establish the feasibility of pharmacological reactivation of Xi-linked MECP2 as a therapeutic approach for RTT.

Keywords: Mecp2; Rett syndrome; X chromosome reactivation; brain neurons; mouse model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cerebral Cortex / metabolism*
  • Cerebral Cortex / pathology
  • Humans
  • Methyl-CpG-Binding Protein 2* / biosynthesis
  • Methyl-CpG-Binding Protein 2* / genetics
  • Methyl-CpG-Binding Protein 2* / metabolism
  • Mice
  • Mice, Knockout
  • Mutation*
  • Neurons / metabolism*
  • Neurons / pathology
  • Rett Syndrome / drug therapy
  • Rett Syndrome / genetics
  • Rett Syndrome / metabolism*
  • Rett Syndrome / pathology

Substances

  • MECP2 protein, human
  • Mecp2 protein, mouse
  • Methyl-CpG-Binding Protein 2