Loss of PTPRJ/DEP-1 enhances NF2/Merlin-dependent meningioma development

J Neurol Sci. 2020 Jan 15:408:116553. doi: 10.1016/j.jns.2019.116553. Epub 2019 Nov 9.

Abstract

Introduction: Meningiomas are common tumors in adults, which develop from the meningeal coverings of the brain and spinal cord. Loss-of-function mutations or deletion of the NF2 gene, resulting in loss of the encoded Merlin protein, lead to Neurofibromatosis type 2 (NF2), but also cause the formation of sporadic meningiomas. It was shown that inactivation of Nf2 in mice caused meningioma formation. Another meningioma tumor-suppressor candidate is the receptor-like density-enhanced phosphatase-1 (DEP-1), encoded by PTPRJ. Loss of DEP-1 enhances meningioma cell motility in vitro and invasive growth in an orthotopic xenograft model. Ptprj-deficient mice develop normally and do not show spontaneous tumorigenesis. Another genetic lesion may be required to interact with DEP-1 loss in meningioma genesis.

Methods: In the present study we investigated in vitro and in vivo whether the losses of DEP-1 and Merlin/NF2 may have a combined effect.

Results: Human meningioma cells deficient for DEP-1, Merlin/NF2 or both showed no statistically significant changes in cell proliferation, while DEP-1 or DEP1/NF2 deficiency led to moderately increased colony size in clonogenicity assays. In addition, the loss of any of the two genes was sufficient to induce a significant reduction of cell size (p < .05) and profound morphological changes. Most important, in Ptprj knockout mice Cre/lox mediated meningeal Nf2 knockout elicited a four-fold increased rate of meningioma formation within one year compared with mice with Ptprj wild type alleles (25% vs 6% tumor incidence).

Conclusions: Our data suggest that loss of DEP-1 and Merlin/NF2 synergize during meningioma genesis.

Keywords: Meningioma; Neurofibromatosis type 2 (NF2); Protein tyrosine phosphatase DEP-1/PTPRJ.

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Line, Tumor
  • Humans
  • Meningeal Neoplasms / genetics
  • Meningeal Neoplasms / metabolism*
  • Meningeal Neoplasms / pathology
  • Meningioma / genetics
  • Meningioma / metabolism*
  • Meningioma / pathology
  • Mice
  • Mice, Transgenic
  • Neurofibromin 2 / deficiency*
  • Neurofibromin 2 / genetics
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3 / deficiency
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3 / genetics

Substances

  • NF2 protein, human
  • Neurofibromin 2
  • PTPRJ protein, human
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3