Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination

DNA Repair (Amst). 2020 Jan:85:102738. doi: 10.1016/j.dnarep.2019.102738. Epub 2019 Nov 12.

Abstract

The repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency. A critical DSB protein required for C-NHEJ is the DNA Ligase IV (LIGIV) accessory factor, X-Ray Cross Complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, participate in LIGIV activation, and to help tether the broken DSB ends together. XRCC4's role in these processes has been muddied by the identification of two additional XRCC4 paralogs, XRCC4-Like Factor (XLF), and Paralog of XRCC4 and XLF (PAXX). The roles that these paralogs play in C-NHEJ is partially understood, but, in turn, has itself been obscured by species-specific differences observed in the absence of one or the other paralogs. In order to investigate the role(s) that XRCC4 may play, with or without XLF and/or PAXX, in lymphoid variable(diversity)joining [V(D)J] recombination as well as in DNA DSB repair in human somatic cells, we utilized gene targeting to inactivate the XRCC4 gene in both parental and XLF- HCT116 cells and then inactivated PAXX in those same cell lines. The loss of XRCC4 expression by itself led, as anticipated, to increased sensitivity to DNA damaging agents as well as an increased dependence on microhomology-mediated DNA repair whether in the context of DSB repair or during V(D)J recombination. The additional loss of XLF in these cell lines sensitized the cells even more whereas the presence or absence of PAXX was scarcely negligible. These studies demonstrate that, of the three LIG4 accessory factor paralogs, the absence of XRCC4 influences DNA repair and recombination the most in human cells.

Keywords: Alternative-EJ (aEJ); Classic non-homologous end joining (C-NHEJ); Paralog of XRCC4 and XLF (PAXX); Variable(Diversity)Joining recombination [V(D)J recombination]; X-ray cross complementing 4 (XRCC4); XRCC4-like factor (XLF).

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • DNA Breaks, Double-Stranded
  • DNA End-Joining Repair
  • DNA Ligase ATP / metabolism
  • DNA Repair Enzymes / genetics*
  • DNA-Binding Proteins / genetics*
  • DNA-Binding Proteins / metabolism*
  • Etoposide / adverse effects*
  • Gene Targeting
  • HCT116 Cells
  • Humans
  • V(D)J Recombination

Substances

  • DNA-Binding Proteins
  • LIG4 protein, human
  • NHEJ1 protein, human
  • PAXX protein, human
  • XRCC4 protein, human
  • Etoposide
  • DNA Repair Enzymes
  • DNA Ligase ATP