miR-103a-3p Suppresses Cell Proliferation and Invasion by Targeting Tumor Protein D52 in Prostate Cancer

J Invest Surg. 2021 Sep;34(9):984-992. doi: 10.1080/08941939.2020.1738602. Epub 2020 Mar 13.

Abstract

Growing evidence points at an association between microRNAs and tumor development. Although dysregulation of microRNA-103a-3p (miR-103a-3p) in multiple human cancers has been reported, its expression in prostate cancer (PCa) remains unknown and there is currently no research on the relationship between miR-103a-3p and tumor protein D52 (TPD52) in PCa. Our aim in this study was to explore the effect and potential mechanism of miR-103a-3p in PCa. qRT-PCR was performed to detected the level of miR-103a-3p in PCa tissues and cells, and in normal tissues. Colony, wound-healing, invasion, proliferation, and apoptosis assays were performed in search miR-103a-3p effect in PCa. TargetScan was used to predict potential targets of miR-103a-3p. Additionally, dual-luciferase reporter, western blot, and immunofluorescence assays were performed to detected the target gene of miR-103a-3p. Finally, we explore the differences in tumor xenograft experiments between nude mice injected with stably miR-103a-3p expressing cells and those expressing a miR-negative control. Low level of miR-103a-3p was detected in PCa tissues and cells, when compared with normal tissues. Enhancement of miR-103a-3p significantly inhibited migration and invasion of PCa cells, and negatively regulated expression of the oncogenic tumor protein D52 (TPD52) through direct binding to its 3'-UTR. Interestingly, overexpression of TPD52 significantly attenuated the effect of mir-103a-3p on PCa. Our study provides the first evidence that miR-103a-3p directly targets TPD52 and inhibits the proliferation and invasion of PCa. This finding helps clarify the role of mir-103a-3p-TPD52 axis in PCa and may provide new therapeutic targets for the disease.

Keywords: invasion; miR-103a-3p; proliferation; prostate cancer; tumor protein D52.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Humans
  • Male
  • Mice
  • Mice, Nude
  • MicroRNAs* / genetics
  • Neoplasm Proteins / genetics*
  • Prostatic Neoplasms* / genetics
  • Transcription Factors

Substances

  • MIRN103 microRNA, human
  • MicroRNAs
  • Neoplasm Proteins
  • TPD52 protein, human
  • Transcription Factors