Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2

Biochem J. 2020 Apr 30;477(8):1499-1513. doi: 10.1042/BCJ20190873.

Abstract

Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.

Keywords: hfe-null mouse; ABCG2; hemochromatosis; hyperuricemia; iron/heme overload; p53.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily G, Member 2 / genetics
  • ATP Binding Cassette Transporter, Subfamily G, Member 2 / metabolism*
  • Animals
  • Female
  • Hemochromatosis / complications
  • Hemochromatosis / congenital
  • Hemochromatosis / enzymology
  • Hemochromatosis / metabolism*
  • Hemochromatosis Protein / genetics
  • Hemochromatosis Protein / metabolism
  • Homeostasis
  • Humans
  • Hyperuricemia / enzymology*
  • Hyperuricemia / etiology
  • Hyperuricemia / metabolism
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Uric Acid / metabolism*
  • Xanthine Oxidase / genetics
  • Xanthine Oxidase / metabolism*

Substances

  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • Abcg2 protein, mouse
  • Hemochromatosis Protein
  • Hfe protein, mouse
  • Uric Acid
  • Xanthine Oxidase