Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling

Biotechnol Appl Biochem. 2021 Oct;68(5):953-963. doi: 10.1002/bab.1984. Epub 2020 Aug 24.

Abstract

Genetic modification of industrial yeast strains often faces more difficulties than that of laboratory strains. Thus, new approaches are still required. In this research, the Angel Yeast-derived haploid strain Kα was genetically modified by multiple rounds of δ-integration, which was achieved via URA3 recycling. Three δ-integrative plasmids, pGδRU, pGδRU-BGL, and pGδRU-EG, were first constructed with two 167 bp δ sequences and a repeat-URA3-repeat fragment. Then, the δ-integrative strains containing the bgl1 or egl2 gene were successfully obtained by one-time transformation of the linearized pGδRU-BGL or pGδRU-EG fragment, respectively. Their counterparts in which the URA3 gene was looped out were also easily isolated by selection for growth on 5´-fluoroorotic acid plates, although the ratio of colonies lacking URA3 to the total number of colonies decreased with increasing copy number of the corresponding integrated cellulase-encoding gene. Similar results were observed during the second round of δ-integration, in which the δ-integration strain Kα(δ::bgl1-repeat) obtained from the first round was transformed with a linearized pGδRU-EG fragment. After 10 rounds of cell growth and transfer to fresh medium, the doubling times and enzyme activities of Kα(δ::bgl1-repeat), Kα(δ::egl2-repeat), and Kα(δ::bgl1-repeat)(δ::egl2-repeat) showed no significant change and were stable. Further, their maximum ethanol concentrations during simultaneous saccharification and fermentation of pretreated corncob over a 7-day period were 46.35, 33.13, and 51.77 g/L, respectively, which were all substantially higher than the parent Kα strain. Thus, repetitive δ-integration with URA3 recycling can be a feasible and valuable method for genetic engineering of Angel Yeast. These results also provide clues about some important issues related to δ-integration, such as the structural stability of δ-integrated genes and the effects of individual integration-site locations on gene expression. Further be elucidation of these issues should help to fully realize the potential of δ-integration-based methods in industrial yeast breeding.

Keywords: URA3 recycling; endoglucanase; industrial yeast; β-Glucosidase; δ-Integration.

MeSH terms

  • Cellulase / genetics*
  • Cellulase / metabolism
  • Chromosomes / genetics*
  • Chromosomes / metabolism
  • Genetic Engineering
  • Protein Conformation
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics*
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • URA3 protein, S cerevisiae
  • Cellulase