Identification of PDHX as a metabolic target for esophageal squamous cell carcinoma

Cancer Sci. 2021 Jul;112(7):2792-2802. doi: 10.1111/cas.14938. Epub 2021 May 24.

Abstract

The metabolism in tumors is reprogrammed to meet its energetic and substrate demands. However, this metabolic reprogramming creates metabolic vulnerabilities, providing new opportunities for cancer therapy. Metabolic vulnerability as a therapeutic target in esophageal squamous cell carcinoma (ESCC) has not been adequately clarified. Here, we identified pyruvate dehydrogenase (PDH) component X (PDHX) as a metabolically essential gene for the cell growth of ESCC. PDHX expression was required for the maintenance of PDH activity and the production of ATP, and its knockdown inhibited the proliferation of cancer stem cells (CSCs) and in vivo tumor growth. PDHX was concurrently upregulated with the CD44 gene, a marker of CSCs, by co-amplification at 11p13 in ESCC tumors and these genes coordinately functioned in cancer stemness. Furthermore, CPI-613, a PDH inhibitor, inhibited the proliferation of CSCs in vitro and the growth of ESCC xenograft tumors in vivo. Thus, our study provides new insights related to the development of novel therapeutic strategies for ESCC by targeting the PDH complex-associated metabolic vulnerability.

Keywords: CPI-613; cancer stemness; metabolic vulnerability; pyruvate dehydrogenase.

MeSH terms

  • Animals
  • Caprylates / pharmacology
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics*
  • Esophageal Neoplasms / genetics*
  • Esophageal Neoplasms / metabolism
  • Esophageal Neoplasms / pathology
  • Esophageal Neoplasms / therapy
  • Esophageal Squamous Cell Carcinoma / genetics*
  • Esophageal Squamous Cell Carcinoma / metabolism
  • Esophageal Squamous Cell Carcinoma / pathology
  • Esophageal Squamous Cell Carcinoma / therapy
  • Heterografts
  • Humans
  • Hyaluronan Receptors / genetics
  • Hyaluronan Receptors / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Proteins / genetics*
  • Neoplasm Proteins / metabolism
  • Neoplasm Transplantation
  • Pyruvate Dehydrogenase Complex / antagonists & inhibitors
  • Pyruvate Dehydrogenase Complex / genetics*
  • Pyruvate Dehydrogenase Complex / metabolism
  • Sulfides / pharmacology
  • Up-Regulation

Substances

  • CD44 protein, human
  • Caprylates
  • Hyaluronan Receptors
  • Neoplasm Proteins
  • PDHX protein, human
  • Pyruvate Dehydrogenase Complex
  • Sulfides
  • devimistat