miR-150 and SRPK1 regulate AKT3 expression to participate in LPS-induced inflammatory response

Innate Immun. 2021 May;27(4):343-350. doi: 10.1177/17534259211018800.

Abstract

miR-150 was found to target the 3'-untranslated regions of AKT3, and the AKT pathway was affected by SR protein kinase 1 (SRPK1). However, the expression and significance of miR-150, AKT3 and SRPK1 in acute lung injury (ALI) were not clear. Here, we found that the expression of miR-150 was significantly reduced, while the expression of AKT3 and SRPK1 were markedly increased in LPS-treated A549, THP-1 and RAW 264.7 cells. miR-150 significantly decreased levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, reduced the expression of AKT3, but had no impact on SRPK1 expression compared with the control group in LPS-treated A549, THP-1 and RAW 264.7 cells. AKT3 silencing only reduced the production of pro-inflammatory cytokines and showed no effect on miR-150 and SRPK1 expression. Finally, we observed that miR-150 mimics and/or silencing of SRPK1 decreased the expression of AKT3 mRNA. Besides, over-expression of miR-150 or silencing of SRPK1 also reduced the expression of AKT3 protein, which exhibited the lowest level in the miR-150 mimics plus si-SRPK1 group. However, si-SRPK1 had no effect on miR-150 level. In conclusion, miR-150 and SRPK1 separately and cooperatively participate into inflammatory responses in ALI through regulating AKT3 pathway. Increased miR-150 and silenced SRPK1 may be a novel potential factor for preventing and treating more inflammatory lung diseases.

Keywords: AKT3; ALI; SRPK1; inflammation; miR-150.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions / genetics
  • A549 Cells
  • Acute Kidney Injury / chemically induced
  • Acute Kidney Injury / genetics
  • Animals
  • Cytokines / metabolism
  • Gene Expression Regulation
  • Humans
  • Inflammation / chemically induced
  • Inflammation / genetics*
  • Inflammation / metabolism
  • Lipopolysaccharides
  • Mice
  • MicroRNAs / genetics*
  • Protein Serine-Threonine Kinases / biosynthesis
  • Protein Serine-Threonine Kinases / genetics*
  • Proto-Oncogene Proteins c-akt / biosynthesis
  • Proto-Oncogene Proteins c-akt / genetics*
  • RAW 264.7 Cells

Substances

  • 3' Untranslated Regions
  • Cytokines
  • Lipopolysaccharides
  • MIRN150 microRNA, human
  • MicroRNAs
  • Mirn150 microRNA, mouse
  • SRPK1 protein, human
  • Srpk1 protein, mouse
  • AKT3 protein, human
  • Akt3 protein, mouse
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt