Role of salt‑inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells

Mol Med Rep. 2021 Nov;24(5):822. doi: 10.3892/mmr.2021.12460. Epub 2021 Sep 24.

Abstract

Colorectal cancer (CRC) is the third most common type of cancer worldwide. Currently, surgery, chemotherapy and radiation therapy are the conventional approaches used to treat CRC. However, these therapy strategies cause several side effects. The present study aimed to develop an alternative and more effective treatment approach for patients with CRC. It has been reported that salt‑inducible kinase 2 (SIK2) acts as an oncogene. Therefore, in the present study, the expression levels of SIK2 were determined in CRC cells using western blot analysis and reverse transcription‑quantitative PCR. In addition, SIK2 was knocked down in CRC cells to evaluate its role in cell proliferation, migration, invasion and glycolysis using Cell Counting Kit‑8, wound healing, Transwell assays and glycolysis cell‑based assay kit, respectively. Additionally, the target genes of SIK2 were identified using bioinformatics analysis, while SIK2 overexpression experiments were carried out to determine whether SIK2 could regulate CRC cell malignant behavior and glycolysis. The results revealed that SIK2 was upregulated in CRC cells. Furthermore, SIK2 knockdown attenuated CRC cell proliferation, migration, invasion and glycolysis. Bioinformatics analysis predicted that SIK2 could interact with tripartite motif containing 28 (TRIM28), while TRIM28 overexpression could reverse the effects of SIK2 silencing on cell proliferation, migration, invasion and glycolysis. This finding indicated that the aforementioned effects of SIK2 were mediated by regulating TRIM28. In conclusion, the findings of the present study suggested that SIK2 may be involved in CRC carcinogenesis and glycolysis by regulating TRIM28 expression. These findings could provide a novel approach to targeted therapy and clinical diagnosis of CRC in the future.

Keywords: colorectal cancer; glycolysis; malignancy; salt‑inducible kinase 2; tripartite motif containing 28.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / metabolism*
  • Colorectal Neoplasms / pathology
  • Enzyme Activation
  • Gene Expression Regulation, Enzymologic
  • Gene Expression Regulation, Neoplastic
  • Gene Knockdown Techniques
  • Gene Silencing
  • Glucose / metabolism*
  • Glycolysis
  • Humans
  • Lactic Acid / metabolism
  • MicroRNAs / genetics
  • Protein Serine-Threonine Kinases / genetics*
  • Protein Serine-Threonine Kinases / metabolism*

Substances

  • MicroRNAs
  • Lactic Acid
  • salt-inducible kinase-2, human
  • Protein Serine-Threonine Kinases
  • Glucose