Increased PHOSPHO1 and alkaline phosphatase expression during the anabolic bone response to intermittent parathyroid hormone delivery

Cell Biochem Funct. 2023 Mar;41(2):189-201. doi: 10.1002/cbf.3772. Epub 2022 Dec 20.

Abstract

The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/- mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.

Keywords: PHOSPHO1; SMPD3; TNAP; bone mineralisation; intermittent PTH; phosphatase.

MeSH terms

  • Alkaline Phosphatase* / metabolism
  • Alkaline Phosphatase* / pharmacology
  • Animals
  • Bone Density
  • Bone and Bones / metabolism
  • Male
  • Mice
  • Osteoblasts / metabolism
  • Osteogenesis
  • Parathyroid Hormone* / metabolism
  • Parathyroid Hormone* / pharmacology
  • Phosphoric Monoester Hydrolases / metabolism
  • Sphingomyelin Phosphodiesterase / metabolism
  • Sphingomyelin Phosphodiesterase / pharmacology

Substances

  • Parathyroid Hormone
  • Alkaline Phosphatase
  • Smpd3 protein, mouse
  • Sphingomyelin Phosphodiesterase
  • PHOSPHO1 protein, mouse
  • Phosphoric Monoester Hydrolases