LINC01082 Inhibits Non-Small Cell Lung Cancer by Targeting the miR-543/TNRC6A Axis

Biochem Genet. 2023 Aug;61(4):1585-1605. doi: 10.1007/s10528-022-10313-5. Epub 2023 Jan 31.

Abstract

Non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases and have poor clinical outcomes. Increasing number of lncRNAs are reported to be implicated in the carcinogenesis of NSCLC. Previous lncRNA-seq results showed that LINC01082 was under-expressed in several cancer types. In the current study, we focused on the role of LINC01082 in NSCLC development. An online bioinformatics tool was utilized to assess the expression profile of LINC01082, miR-543, and TNRC6A in NSCLC samples. RT-qPCR analysis was performed for evaluating LINC01082, TNRC6A and miR-543 expression in cells (NSCLC cells vs. normal lung cells). Impact of LINC01082 upregulation on cell proliferation in vitro was investigated by MTT and EdU experiments. Transwell assay was applied to analyze the migration and invasion of NSCLC cells. The cell apoptosis after plasmid transfection was detected by flow cytometry. The interactions among LINC01082, miR-543 and TNRC6A were measured by RNA pulldown and luciferase reporter assays. We showed that LINC01082 levels were downregulated in NSCLC samples and NSCLC cells. Overexpression of LINC01082 inhibited NSCLC cell proliferation, migration and invasion and strengthened cell apoptosis. LINC01082 directly bound to miR-543, and miR-543 targeted TNRC6A. TNRC6A was downregulated and miR-543 was overexpressed in NSCLC cells. miR-543 inhibition suppressed malignant cellular behaviors. TNRC6A knockdown reversed the effects of LINC01082 on the malignant character of NSCLC cells. In conclusion, LINC01082 exerts an antioncogenic role in NSCLC via interaction with miR-543 to regulate TNRC6A expression.

Keywords: LINC01082; Non-small cell lung cancer; TNRC6A; miR-543.

MeSH terms

  • Apoptosis / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Down-Regulation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / pathology
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism

Substances

  • MicroRNAs
  • MIRN543 microRNA, human