Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach

Inflammopharmacology. 2023 Aug;31(4):1683-1693. doi: 10.1007/s10787-023-01239-4. Epub 2023 May 19.

Abstract

In Covid-19, variations in fasting blood glucose are considered a distinct risk element for a bad prognosis and outcome in Covid-19 patients. Tirazepatide (TZT), a dual glucagon-like peptide-1 (GLP-1)and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist may be effective in managing Covid-19-induced hyperglycemia in diabetic and non-diabetic patients. The beneficial effect of TZT in T2DM and obesity is related to direct activation of GIP and GLP-1 receptors with subsequent improvement of insulin sensitivity and reduction of body weight. TZT improves endothelial dysfunction (ED) and associated inflammatory changes through modulation of glucose homeostasis, insulin sensitivity, and pro-inflammatory biomarkers release. TZT, through activation of the GLP-1 receptor, may produce beneficial effects against Covid-19 severity since GLP-1 receptor agonists (GLP-1RAs) have anti-inflammatory and pulmoprotective implications in Covid-19. Therefore, GLP-1RAs could effectively treat severely affected Covid-19 diabetic and non-diabetic patients. Notably, using GLP-1RAs in T2DM patients prevents glucose variability, a common finding in Covid-19 patients. Therefore, GLP-1RAs like TZT could be a therapeutic strategy in T2DM patients with Covid-19 to prevent glucose variability-induced complications. In Covid-19, the inflammatory signaling pathways are highly activated, resulting in hyperinflammation. GLP-1RAs reduce inflammatory biomarkers like IL-6, CRP, and ferritin in Covid-19 patients. Therefore, GLP-1RAs like TZ may be effective in Covid-19 patients by reducing the inflammatory burden. The anti-obesogenic effect of TZT may reduce Covid-19 severity by ameliorating body weight and adiposity. Furthermore, Covid-19 may induce substantial alterations in gut microbiota. GLP-1RA preserves gut microbiota and prevents intestinal dysbiosis. Herein, TZT, like other GLP-1RA, may attenuate Covid-19-induced gut microbiota alterations and, by this mechanism, may mitigate intestinal inflammation and systemic complications in Covid-19 patients with either T2DM or obesity. As opposed to that, glucose-dependent insulinotropic polypeptide (GIP) was reduced in obese and T2DM patients. However, activation of GIP-1R by TZT in T2DM patients improves glucose homeostasis. Thus, TZT, through activation of both GIP and GLP-1, may reduce obesity-mediated inflammation. In Covid-19, GIP response to the meal is impaired, leading to postprandial hyperglycemia and abnormal glucose homeostasis. Therefore, using TZT in severely affected Covid-19 patients may prevent the development of glucose variability and hyperglycemia-induced oxidative stress. Moreover, exaggerated inflammatory disorders in Covid-19 due to the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α may lead to systemic inflammation and cytokine storm development. Besides, GIP-1 inhibits expression of IL-1β, IL-6, MCP-1, chemokines and TNF-α. Therefore, using GIP-1RA like TZT may inhibit the onset of inflammatory disorders in severely affected Covid-19 patients. In conclusion, TZT, through activation of GLP-1 and GIP receptors, may prevent SARS-CoV-2-induced hyperinflammation and glucose variability in diabetic and non-diabetic patients.

Keywords: Glucagon-like peptide-1; Glucose-dependent insulinotropic polypeptide; Tirazepatide.

Publication types

  • Review

MeSH terms

  • Blood Glucose / metabolism
  • Body Weight
  • COVID-19*
  • Diabetes Mellitus, Type 2* / metabolism
  • Glucagon-Like Peptide 1 / metabolism
  • Glucagon-Like Peptide 1 / therapeutic use
  • Glucagon-Like Peptide-1 Receptor / agonists
  • Glucagon-Like Peptide-1 Receptor / metabolism
  • Glucagon-Like Peptide-1 Receptor / therapeutic use
  • Glucose
  • Humans
  • Hyperglycemia* / metabolism
  • Inflammation / drug therapy
  • Insulin
  • Insulin Resistance*
  • Interleukin-6
  • Obesity
  • SARS-CoV-2 / metabolism
  • Tumor Necrosis Factor-alpha

Substances

  • tirzepatide
  • Glucagon-Like Peptide-1 Receptor
  • Interleukin-6
  • Tumor Necrosis Factor-alpha
  • Blood Glucose
  • Glucagon-Like Peptide 1
  • Glucose
  • Insulin