The impact of glutaredoxin 1 and glutaredoxin 2 double knockout on lens epithelial cell function

Exp Eye Res. 2023 Aug:233:109521. doi: 10.1016/j.exer.2023.109521. Epub 2023 Jun 3.

Abstract

Glutaredoxins (Grx1 and Grx2) are thiol-repair antioxidant enzymes that play vital roles in cellular redox homeostasis and various cellular processes. This study aims to evaluate the functions of the glutaredoxin (Grx) system, including glutaredoxin 1 (Grx1) and glutaredoxin 2 (Grx2), using Grx1/Grx2 double knockout (DKO) mice as a model. We isolated primary lens epithelial cells (LECs) from wild-type (WT) and DKO mice for a series of in vitro analyses. Our results revealed that Grx1/Grx2 DKO LECs exhibited slower growth rates, reduced proliferation, and aberrant cell cycle distribution compared to WT cells. Elevated levels of β-galactosidase activity were observed in DKO cells, along with a lack of caspase 3 activation, suggesting that these cells may be undergoing senescence. Additionally, DKO LECs displayed compromised mitochondrial function, characterized by decreased ATP production, reduced expression levels of oxidative phosphorylation (OXPHOS) complexes III and IV, and increased proton leak. A compensatory metabolic shift towards glycolysis was observed in DKO cells, indicating an adaptive response to Grx1/Grx2 deficiency. Furthermore, loss of Grx1/Grx2 affected cellular structure, leading to increased polymerized tubulin, stress fiber formation, and vimentin expression in LECs. In conclusion, our study demonstrates that Grx1/Grx2 double deletion in LECs results in impaired cell proliferation, aberrant cell cycle progression, disrupted apoptosis, compromised mitochondrial function, and altered cytoskeletal organization. These findings underscore the importance of Grx1 and Grx2 in maintaining cellular redox homeostasis and the consequences of their deficiency on cellular structure and function. Further research is needed to elucidate the precise molecular mechanisms underlying these observations and to investigate potential therapeutic strategies targeting Grx1 and Grx2 for various physiological processes and oxidative-stress related diseases such as cataract.

Keywords: Apoptosis; Cell proliferation; Cytoskeletal organization; Glutaredoxins (Grx1/Grx2); Glycolysis; Lens epithelial cells (LECs); Mitochondrial function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Epithelial Cells / metabolism
  • Glutaredoxins* / genetics
  • Glutaredoxins* / metabolism
  • Mice
  • Mitochondria* / metabolism
  • Mitochondrial Membranes / metabolism
  • Oxidation-Reduction

Substances

  • Glutaredoxins
  • Glrx2 protein, mouse
  • Glrx protein, mouse