Inter-organ crosstalk during development and progression of type 2 diabetes mellitus

Nat Rev Endocrinol. 2024 Jan;20(1):27-49. doi: 10.1038/s41574-023-00898-1. Epub 2023 Oct 16.

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.

Publication types

  • Review

MeSH terms

  • Diabetes Mellitus, Type 2* / metabolism
  • Humans
  • Insulin Resistance*
  • Islets of Langerhans* / metabolism
  • MicroRNAs* / metabolism
  • Pancreas / pathology

Substances

  • MicroRNAs