Calcineurin suppresses rat H9c2 cardiomyocyteprotective autophagy under chronic intermittent hypoxia by downregulating the AMPK pathway

Exp Cell Res. 2023 Dec 15;433(2):113850. doi: 10.1016/j.yexcr.2023.113850. Epub 2023 Nov 4.

Abstract

Calcineurin plays a key role in cardiovascular pathogenesis by exerting pro-apoptotic effects in cardiomyocytes. However, whether calcineurin can regulate cardiomyocyte autophagy under conditions of chronic intermittent hypoxia (CIH) remains unclear. Here, we showed that CIH induced calcineurin activity in H9c2 cells, which attenuated adenosine monophosphate-activated protein kinase (AMPK) signaling and inhibited autophagy. In H9c2 cells, autophagy levels, LC3 expression, and AMPK phosphorylation were significantly elevated under conditions of CIH within 3 days. However, after 5 days of CIH, these effects were reversed and calcineurin activity and apoptosis were significantly increased. The calcineurin inhibitor 17-Allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl) -1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo- [22.3.1.04,9]octacos-18- ene-2,3,10,16-tetrone (FK506) restored AMPK activation and LC3 expression and attenuated CIH-induced H9c2 cell apoptosis. In contrast, calcineurin overexpression significantly attenuated the increase in LC3 expression and enhanced H9c2 cell apoptosis under conditions of CIH. Calcineurin inhibition failed to induce autophagy or alleviate apoptosis in H9c2 cells expressing a kinase-dead K45R AMPK mutant. Autophagy inhibition abrogated the protective effects of FK506-mediated calcineurin inhibition. These results indicate that calcineurin suppresses adaptive autophagy during CIH by downregulating AMPK activation. Our findings reveal the underlying mechanism of calcineurin and autophagy regulation during H9c2 cell survival under conditions of CIH and may provide a new strategy for preventing CIH-induced cardiomyocyte damage.

Keywords: Apoptosis; Autophagy; Calcineurin; Cardiomyocyte damage; Chronic intermittent hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases* / genetics
  • AMP-Activated Protein Kinases* / metabolism
  • Animals
  • Apoptosis
  • Autophagy*
  • Calcineurin* / metabolism
  • Hypoxia
  • Myocytes, Cardiac* / metabolism
  • Rats
  • Tacrolimus / pharmacology

Substances

  • AMP-Activated Protein Kinases
  • Calcineurin
  • Tacrolimus