TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis

Autoimmunity. 2023 Dec;56(1):2282939. doi: 10.1080/08916934.2023.2282939. Epub 2023 Nov 17.

Abstract

The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.

Keywords: KLF6; TNF-α; angiogenesis; exosomes; miR-200a-3p.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arthritis, Rheumatoid* / metabolism
  • Cell Proliferation
  • Exosomes* / genetics
  • Exosomes* / metabolism
  • Exosomes* / pathology
  • Fibroblasts / metabolism
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Human Umbilical Vein Endothelial Cells / pathology
  • Humans
  • Kruppel-Like Factor 6 / metabolism
  • Kruppel-Like Factor 6 / pharmacology
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Synoviocytes* / metabolism
  • Tumor Necrosis Factor-alpha / metabolism
  • Tumor Necrosis Factor-alpha / pharmacology
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism
  • Vascular Endothelial Growth Factor A / pharmacology

Substances

  • KLF6 protein, human
  • Kruppel-Like Factor 6
  • MicroRNAs
  • Tumor Necrosis Factor-alpha
  • Vascular Endothelial Growth Factor A
  • VEGFA protein, human
  • MIRN200 microRNA, human