Anoctamin-1 is induced by TGF-β and contributes to lung myofibroblast differentiation

Am J Physiol Lung Cell Mol Physiol. 2024 Jan 1;326(1):L111-L123. doi: 10.1152/ajplung.00155.2023. Epub 2023 Dec 12.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-β (TGF-β) is one of the most established drivers of fibrotic processes. TGF-β promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-β robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-β-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-β signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-β treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-β-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-β-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-β; and 2) ANO1 mediates TGF-β-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-β (TGF-β) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.

Keywords: AKT; RhoA; TGF-β; anoctamin-1; with-no-lysine (K) kinase.

MeSH terms

  • Anoctamin-1 / metabolism
  • Cell Differentiation
  • Chlorides / metabolism
  • Fibroblasts / metabolism
  • Humans
  • Idiopathic Pulmonary Fibrosis* / pathology
  • Lung / metabolism
  • Myofibroblasts* / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta / pharmacology
  • Transforming Growth Factor beta1 / metabolism
  • Transforming Growth Factors / metabolism
  • Transforming Growth Factors / pharmacology

Substances

  • Anoctamin-1
  • Chlorides
  • Proto-Oncogene Proteins c-akt
  • RNA, Small Interfering
  • Transforming Growth Factor beta
  • Transforming Growth Factor beta1
  • Transforming Growth Factors
  • ANO1 protein, human