Computational inference of eIF4F complex function and structure in human cancers

Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2313589121. doi: 10.1073/pnas.2313589121. Epub 2024 Jan 24.

Abstract

The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This mechanism is considered complementary to cap-dependent initiation, particularly in tumors under stress conditions. However, the selection and molecular mechanism of specific translation initiation remains poorly understood in human cancers. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F structure with and without eIF4E binding. For cap-dependent initiation, our modeling reveals extensive interactions between the N-terminal eIF4E-binding domain of eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interaction between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the involvement of eIF4E.

Keywords: cap-independent translation initiation; computational analysis; eIF3e; eIF4F dysregulation; eukaryotic initiation factor 4F (eIF4F).

MeSH terms

  • DNA Copy Number Variations
  • Eukaryotic Initiation Factor-3
  • Eukaryotic Initiation Factor-4E / genetics
  • Eukaryotic Initiation Factor-4F* / genetics
  • Humans
  • Neoplasms* / genetics

Substances

  • Eukaryotic Initiation Factor-4F
  • Eukaryotic Initiation Factor-4E
  • Eukaryotic Initiation Factor-3