The Regulatory Mechanism of Hypoxia-inducible Factor 1 and its Clinical Significance

Curr Mol Pharmacol. 2024:17:e18761429266116. doi: 10.2174/0118761429266116231123160809.

Abstract

Hypoxia-inducible factor (HIF) is a nuclear protein that plays a crucial role in oxygen homeostasis through its transcriptional activity and thousands of target gene profiles. Through transcriptional and post-transcriptional regulation, the downstream target genes of HIF can trigger multiple pathological responses in the body, including energy metabolism, cytopenia, and angiogenesis. There are three distinct subtypes of HIF: HIF-1, HIF-2, and HIF-3. HIF-1 is a significant regulator of the cellular response to hypoxia, and the balance between its production and degradation is critical for this response. As hypoxia is linked to several disorders, understanding HIF can open up novel avenues for the treatment of many diseases. This review describes the regulatory mechanisms of HIF-1 synthesis and degradation and the clinical significance of the hypoxia-inducible factor pathway in lung injury, kidney disease, hematologic disorders, and inflammation-related diseases.

Keywords: Amino acid.; Diseases; Hypoxia; Hypoxia-inducible factor 1; Hypoxia-inducible factor pathway; Isoforms.

Publication types

  • Review

MeSH terms

  • Cell Hypoxia* / physiology
  • Clinical Relevance
  • Gene Expression Regulation
  • Humans
  • Hypoxia
  • Hypoxia-Inducible Factor 1* / genetics
  • Hypoxia-Inducible Factor 1* / metabolism

Substances

  • Hypoxia-Inducible Factor 1