miR-29b-1-5p exacerbates myocardial injury induced by sepsis in a mouse model by targeting TERF2

Acta Biochim Biophys Sin (Shanghai). 2024 Apr 25;56(4):607-620. doi: 10.3724/abbs.2024020.

Abstract

Myocardial damage is a critical complication and a significant contributor to mortality in sepsis. MicroRNAs (miRNAs) have emerged as key players in sepsis pathogenesis. In this study, we explore the effect and mechanisms of miR-29b-1-5p on sepsis-induced myocardial damage. Sepsis-associated Gene Expression Omnibus datasets (GSE72380 and GSE29914) are examined for differential miRNAs. The mouse sepsis-induced cardiac injury was established by Lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). LPS-treated HL-1 mouse cardiomyocytes simulate myocardial injury in vitro. miR-29b-1-5p is co-upregulated in both datasets and in cardiac tissue from sepsis mouse and HL-1 cell models. miR-29b-1-5p expression downregulation was achieved by antagomir transduction and confirmed by real-time quantitative reverse transcription PCR. Survival analysis and echocardiography examination show that miR-29b-1-5p inhibition improves mice survival cardiac function in LPS- and CLP-induced sepsis mice. Hematoxylin and eosin and Masson's trichrome staining and Immunohistochemistry analysis of mouse myocardial α-smooth muscle actin show that miR-29b-1-5p inhibition reduces myocardial tissue injury and fibrosis. The inflammatory cytokines and cardiac troponin I (cTnI) levels in mouse serum and HL-1 cells are also decreased by miR-29b-1-5p inhibition, as revealed by enzyme-linked immunosorbent assay. The expressions of autophagy-lysosomal pathway-related and apoptosis-related proteins in the mouse cardiac tissues and HL-1 cells are evaluated by western blot analysis. The sepsis-induced activation of the autophagy-lysosomal pathway and apoptosis are also reversed by miR-29b-1-5p antagomir. MTT and flow cytometry measurement further confirm the protective role of miR-29b-1-5p antagomir in HL-1 cells by increasing cell viability and suppressing cell apoptosis. Metascape functionally enriches TargetScan-predicted miR-29b-1-5p target genes. TargetScan prediction and dual luciferase assay validate the targeting relationship between miR-29b-1-5p and telomeric repeat-binding factor 2 (TERF2). The expression and function of TERF2 in HL-1 cells and mice are also evaluated. MiR-29b-1-5p negatively regulates the target gene TERF2. TERF2 knockdown partly restores miR-29b-1-5p antagomir function in LPS-stimulated HL-1 cells. In summary, miR-29b-1-5p targetedly inhibits TERF2, thereby enhancing sepsis-induced myocardial injury.

Keywords: apoptosis; autophagy; miR-29b-1-5p; myocardial injury; sepsis; telomeric repeat-binding factor 2 (TERF2).

MeSH terms

  • Animals
  • Antagomirs
  • Down-Regulation
  • Lipopolysaccharides / pharmacology
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Sepsis* / complications
  • Sepsis* / genetics
  • Sepsis* / metabolism

Substances

  • Lipopolysaccharides
  • Antagomirs
  • MicroRNAs

Grants and funding

This work was supported by the grants from the National Natural Science Foundation of China (No. 81971819 and No. 82204986) and the Scientific Research Plan Project of Hunan Provincial Health Commission (No. D202304117248).