Autocrine transforming growth factor beta 1 modulates the expression of integrin alpha 5 beta 1 in human colon carcinoma FET cells

J Biol Chem. 1995 Jun 9;270(23):14154-9. doi: 10.1074/jbc.270.23.14154.

Abstract

Transforming growth factor beta (TGF-beta) has been extensively studied as an exogenous agent that stimulates the expression of extracellular matrix proteins and their cell-surface integrin receptors in a variety of cell types. However, the recent demonstration of autocrine TGF-beta growth effects in a number of cell types suggests that the steady-state expression of extracellular matrix and integrin proteins and their biological activity may also be under autocrine TGF-beta control. Previously, we reported that repression of autocrine TGF-beta 1 activity by constitutive expression of a full-length TGF-beta 1 antisense cDNA led to abrogation of autocrine negative TGF-beta and, as a result, increased tumorigenicity and anchorage-independent growth of a poorly tumorigenic, well-differentiated colon carcinoma cell line designated FET (Wu, S., Theodorescu, D., Kerbel, R. S., Willson, J. K. V., Mulder, K. M., Humphrey, L. E., and Brattain, M. G. (1992) J. Cell Biol. 116, 187-196). Consequently, we have used this model system to study the effects of repression of autocrine TGF-beta 1 activity on the expression of integrin alpha 5 beta 1 and integrin alpha 5 beta 1-mediated cell adhesion to fibronectin. The expression of the integrin alpha 5 subunit was reduced in TGF-beta 1 antisense transfected FET cells at both mRNA and protein levels as determined by RNase protection assays and immunoprecipitation, respectively. Autocrine TGF-beta 1 had no effect on the transcription of integrin alpha 5 and beta 1 subunits, indicating that autocrine TGF-beta 1 may regulate integrin alpha 5 beta 1 expression at the post-transcriptional level. The diminished expression of integrin alpha 5 beta 1 on the cell surface led to the reduced adhesion of TGF-beta 1 antisense transfected cells to fibronectin. This phenomenon could be reversed by treatment with exogenous TGF-beta 1.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Adhesion / drug effects
  • Colonic Neoplasms / metabolism
  • Fibronectins / physiology
  • Gene Expression Regulation / drug effects*
  • Humans
  • Integrins / genetics*
  • RNA, Messenger / analysis
  • Receptors, Fibronectin
  • Transforming Growth Factor beta / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Fibronectins
  • Integrins
  • RNA, Messenger
  • Receptors, Fibronectin
  • Transforming Growth Factor beta