Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA

J Am Soc Nephrol. 1995 Apr;5(10):1782-91. doi: 10.1681/ASN.V5101782.

Abstract

Several growth factors have been found to play an important role in the recovery from acute renal failure (ARF). The effect of the continuous subcutaneous infusion of human recombinant insulin-like growth factor (IGF)-1 (125 micrograms daily by osmotic minipumps) in a rat model of mercuric chloride (HgCl2)-induced ARF was examined. HgCl2 (4 mg/kg) induced ARF with a mortality that was unaffected by IGF-1. However, IGF-1 significantly enhanced functional and histologic recovery in the survivors, as measured by serum creatinine and creatinine clearance and by histologic scoring. Solution hybridization RNAase protection assays showed that renal IGF-1 mRNA, IGF-1 receptor (IGF-1R) mRNA, and IGF-binding protein-1 (IGFBP-1) mRNA were unaffected by exogenous IGF-1, but this treatment significantly increased renal IGF-1 in ARF rats compared with normal rats and ARF rats not receiving IGF-1. After ARF renal mRNA for IGF-1 was decreased, IGF-1R was unchanged and IGFBP-1 was increased. Similar changes occurred in IGF-1-infused ARF rats. Thus, (1) IGF-1 enhances recovery from nephrotoxic ARF both functionally and histologically; (2) in nephrotoxic ARF, there is (a) a reduction in IGF-1 mRNA expression that is not prevented by IGF-1 infusion, and (b) an increase in renal IGFBP-1 mRNA. This may allow a significant increase in renal IGF-1 levels in IGF-1-infused ARF rats, despite the decrease in renal IGF-1 mRNA. A local increase in renal IGFBP-1 and IGF-1 may explain the accelerated recovery from ATN in this model. It was concluded that HgCl2-induced ARF is amenable to improvement by IGF-1 infusion and that the increase in renal IGFBP-1 mRNA may be an important modulator in the recovery of the kidney.

MeSH terms

  • Acute Kidney Injury / chemically induced
  • Acute Kidney Injury / drug therapy*
  • Acute Kidney Injury / metabolism
  • Animals
  • Carrier Proteins / genetics
  • Insulin-Like Growth Factor Binding Protein 1
  • Insulin-Like Growth Factor I / genetics
  • Insulin-Like Growth Factor I / therapeutic use*
  • Kidney / metabolism
  • Kidney / pathology
  • Male
  • Mercuric Chloride
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Inbred Strains
  • Receptor, IGF Type 1 / genetics

Substances

  • Carrier Proteins
  • Insulin-Like Growth Factor Binding Protein 1
  • RNA, Messenger
  • Mercuric Chloride
  • Insulin-Like Growth Factor I
  • Receptor, IGF Type 1