Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors

J Clin Endocrinol Metab. 1995 Nov;80(11):3107-10. doi: 10.1210/jcem.80.11.7593409.

Abstract

Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca(2+)-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathyroid hypercellularity. Thus, the Ca(2+)-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca2+ similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca(2+)-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathyroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca(2+)-sensing pathway.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoma / genetics*
  • Calcium / metabolism*
  • Carcinoma / genetics*
  • DNA Mutational Analysis*
  • Extracellular Space / metabolism*
  • Humans
  • Hyperplasia
  • Nucleic Acid Hybridization
  • Parathyroid Glands / pathology
  • Parathyroid Neoplasms / genetics*
  • Receptors, Cell Surface / genetics*
  • Ribonucleases

Substances

  • Receptors, Cell Surface
  • Ribonucleases
  • Calcium