The neurotensin gene is a downstream target for Ras activation

J Clin Invest. 1995 Jun;95(6):2822-30. doi: 10.1172/JCI117987.

Abstract

Ras regulates novel patterns of gene expression and the differentiation of various eukaryotic cell types. Stable transfection of Ha-ras into the human colon cancer line CaCo2 results in the morphologic differentiation to a small bowel phenotype. The purpose of our study was to determine whether the Ras regulatory pathway plays a role in the expression of the neurotensin gene (NT/N), a terminally differentiated endocrine product specifically localized in the gastrointestinal tract to the adult small bowel. We found that CaCo2-ras cells, but not parental CaCo2, express high levels of the human NT/N gene and, moreover, that this increase in gene expression is regulated at the level of transcription. Transfection experiments using NT/N-CAT mutation constructs identify the proximal 200 bp of NT/N flanking sequence as sufficient for maximal Ras-mediated NT/N reporter gene induction. Furthermore, a proximal AP-1/CRE motif is crucial for this Ras-mediated NT/N activation. Wild-type Ha-ras induces NT/N gene expression, albeit at lower levels than activated Ras; a dominant-negative Raf blocks this NT/N induction, suggesting that Raf lies down-stream of Ras in this pathway. In addition, postconfluent cultures of CaCo2 cells, which are differentiated to a small bowel phenotype, express the NT/N gene by 6 d after reaching confluency; this increase of NT/N expression is associated with concomitant increases of cellular p21ras protein. We conclude that Ras (both wild-type and activated) enhances expression of the NT/N gene in the gut-derived CaCo2 cell line, suggesting an important role for the Ras signaling pathway in NT/N gene transcription. Our results underscore the possibility that tissue-specific genes (such as NT/N) expressed in distinct subpopulations of the gut may be subject to Ras regulation. Finally, we speculate that the NT/N gene and the CaCo2 and CaCo2-ras cell systems will provide unique models to further define the cellular mechanisms leading to mammalian intestinal differentiation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Differentiation
  • Cell Transformation, Neoplastic / genetics
  • Gene Expression Regulation, Neoplastic
  • Genes, ras*
  • Humans
  • In Vitro Techniques
  • Intestines / cytology
  • Intestines / physiology
  • Neurotensin / genetics*
  • Promoter Regions, Genetic
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • RNA, Messenger / genetics
  • Transcriptional Activation
  • Tumor Cells, Cultured

Substances

  • RNA, Messenger
  • Neurotensin
  • HRAS protein, human
  • Proto-Oncogene Proteins p21(ras)