Development of methods for somatic cell gene therapy directed against viral diseases, using retroviral vectors carrying the murine or human interferon-beta coding sequence: establishment of the antiviral state in human cells

Hum Gene Ther. 1993 Oct;4(5):567-77. doi: 10.1089/hum.1993.4.5-567.

Abstract

We are developing methods for somatic cell gene therapy directed against chronic and fatal virus infections, such as acquired immunodeficiency (AIDS), by transforming cells with a constitutively expressed interferon (IFN) coding sequence. Previous work from our laboratory has shown that stable antiviral expression (SAVE) can be obtained in murine BALB/c 3T3 cells and human U937 cells transformed with plasmids carrying either the murine or the human IFN-beta coding sequence placed under the expression control of a 0.6-kb Xho II-Nru I promoter region of the murine H-2Kb major histocompatibility complex (MHC) gene (Macé et al., 1991; Seif et al., 1991). In the present paper, we report the construction of murine (Mu) and human (Hu) IFN-beta-expressing retroviral vectors (pMPZen-MuIFN beta, pHMB-KbMuIFN beta) and the problems encountered. Because of the murine origin of commonly used packaging cells and the species specificity of IFN, it was evident that placing the murine IFN-beta sequence under constitutive expression control could result in the production of Mu IFN in the murine packaging system, and thereby lead to decreased vector production and also to enhanced resistance of target cells. Using a packaging cell line that releases a beta-galactosidase-expressing vector, we show that, as expected, Mu IFN-alpha/beta decreases vector production of murine packaging cells and also inhibits the transformation of target NIH-3T3 cells with this vector, but the presence of anti-Mu IFN antibodies rescues the viral titer of the packaging cells and restores the sensitivity of target cells to virus transformation. However, the same antibody treatment is unable to rescue the viral titer of psi-2 packaging cells producing autocrine Mu IFN-beta encoded by the pMPZen-MuIFN beta and pHMB-KbMuIFN beta vectors. Because of the species specificity of IFN, this problem is circumvented with the pMFG-HuIFN beta vector carrying the human IFN-beta sequence. In spite of the production of Hu IFN, murine psi-CRIP packaging cells are able to release retroviral vectors expressing Hu IFN-beta, and these amphotropic vectors can transform human MRC-5 cells and confer to these cells an enhanced resistance to vesicular stomatitis virus (VSV) infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Base Sequence
  • Cell Line
  • DNA Primers
  • Gene Transfer Techniques
  • Genetic Therapy / methods*
  • Genetic Vectors*
  • Humans
  • Immune Sera
  • Interferon-beta / genetics*
  • Interferon-beta / therapeutic use
  • Mice
  • Molecular Sequence Data
  • Retroviridae / genetics*
  • Transformation, Genetic
  • Virus Diseases / therapy*

Substances

  • DNA Primers
  • Immune Sera
  • Interferon-beta