The x-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30-->Met variant to 1.7-A resolution

J Biol Chem. 1993 Feb 5;268(4):2416-24.

Abstract

The x-ray crystal structures of normal human transthyretin (prealbumin) and the amyloidogenic Val-30-Met variant have been refined at 1.7-A resolution to R-values of 0.168 and 0.179, respectively, for 19,882 and 20,362 reflections (Fobs > 2.0 sigma). Standard deviations for stereochemical parameters are 0.018 and 0.022 A for bond distances, 0.030 and 0.038 A for angle distances, and 0.035 and 0.070 A for planar 1-4 distances. The newly refined normal structure shows improvement over the original structure of Blake and Swan (Blake, C. C. F., and Swan, I. D. A. (1971) J. Mol. Biol. 61, 217-224) in stereochemistry and in the conformation of the loop regions. Residues Arg-103, Thr-123, Asn-124, and Pro-125 have now been resolved, and residues 1-9 and 126-127 have been modeled with the aid of simulated annealing refinement. The functional form of transthyretin is a tetramer, having a cylindrical cavity which will bind thyroxine and an exterior binding site for the complex of retinol with retinol-binding protein. The monomer is a beta barrel flattened to become more like a sandwich with residue 30 in the interior. The methionyl for valyl substitution forces the beta sheets of the monomer as much as 1 A apart, resulting in a distortion of the thyroxine-binding cavity, in agreement with the independent observations that the Met-30 variant has low affinity for thyroxine.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amyloid
  • Crystallography
  • Humans
  • Hydrogen Bonding
  • Models, Molecular
  • Molecular Sequence Data
  • Prealbumin / chemistry
  • Prealbumin / ultrastructure*
  • Protein Conformation
  • Protein Structure, Secondary
  • Structure-Activity Relationship
  • X-Ray Diffraction

Substances

  • Amyloid
  • Prealbumin