Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia

Mol Cell Biol. 1996 Mar;16(3):771-7. doi: 10.1128/MCB.16.3.771.

Abstract

A heteroplasmic G-to-A transition at nucleotide pair (np) 14459 within the mitochondrial DNA (mtDNA)-encoded NADH dehydrogenase subunit 6 (ND6) gene has been identified as the cause of Leber hereditary optic neuropathy (LHON) and/or pediatric-onset dystonia in three unrelated families. This ND6 np 14459 mutation changes a moderately conserved alanine to a valine at amino acid position 72 of the ND6 protein. Enzymologic analysis of mitochondrial NADH dehydrogenase (complex I) with submitochondrial particles isolated from Epstein-Barr virus-transformed lymphoblasts revealed a 60% reduction (P < 0.005) of complex I-specific activity in patient cell lines compared with controls, with no differences in enzymatic activity for complexes II plus III, III and IV. This biochemical defect was assigned to the ND6 np 14459 mutation by using transmitochondrial cybrids in which patient Epstein-Barr virus-transformed lymphoblast cell lines were enucleated and the cytoplasts were fused to a mtDNA-deficient (p 0) lymphoblastoid recipient cell line. Cybrids harboring the np 14459 mutation exhibited a 39% reduction (p < 0.02) in complex I-specific activity relative to wild-type cybrid lines but normal activity for the other complexes. Kinetic analysis of the np 14459 mutant complex I revealed that the Vmax of the enzyme was reduced while the Km remained the same as that of wild type. Furthermore, specific activity was inhibited by increasing concentrations of the reduced coenzyme Q analog decylubiquinol. These observations suggest that the np 14459 mutation may alter the coenzyme Q-binding site of complex I.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line, Transformed
  • DNA, Mitochondrial / genetics*
  • Herpesvirus 4, Human
  • Humans
  • Hybrid Cells
  • Mutation
  • NADH Dehydrogenase / genetics*
  • Optic Atrophies, Hereditary / enzymology
  • Optic Atrophies, Hereditary / genetics*

Substances

  • DNA, Mitochondrial
  • NADH Dehydrogenase