In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector

Hum Gene Ther. 1996 Aug 20;7(13):1503-14. doi: 10.1089/hum.1996.7.13-1503.

Abstract

Recombinant adenoviruses are widely used for the transfer of foreign genes into various mammalian cells. However, the utilization of these vectors for cancer gene therapy requires the specific and efficient expression of the transferred gene in tumor cells. To obtain targeted expression in hepatoma cells, we constructed recombinant adenoviral vectors containing transcriptional elements from either the rat alpha-fetoprotein (AFP) or the human insulin-like growth factor II (IGFII) genes driving expression of the nuclear beta-galactosidase gene (nls lacZ). In vitro infection revealed that the AFP but not the IGFII transcriptional regulatory sequence controlled nls lacZ expression specifically in hepatoma cells. The same specificity was obtained in vivo in subcutaneous human hepatic tumors generated by engraftment of Huh7 hepatoma cells in nude mice as well as in primary liver tumors developed in rats and mice. No marker gene expression was detectable after AFP-nls lacZ gene transfer to normal rat liver parenchyma despite evidence for the presence of DNA encoding the nls lacZ gene. However, in vivo experiments with primary liver tumors in rats and mice also revealed that primary hepatoma cells were poorly infected by adenoviral vectors. Peritumoral and normal tissues were infected efficiently by adenoviral vectors. We conclude that hepatoma cell-specific expression of a transgene can be achieved with AFP regulatory sequences but that adenoviral vectors may not be the preferable vector for transferring genes in vivo in primary liver tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics*
  • Animals
  • Blotting, Southern
  • Diethylnitrosamine / pharmacology
  • Escherichia coli / genetics
  • Gene Expression Regulation, Neoplastic / genetics*
  • Genetic Therapy* / methods
  • Genetic Vectors / genetics
  • Humans
  • Insulin-Like Growth Factor II / genetics
  • Lac Operon / genetics
  • Liver Neoplasms / enzymology
  • Liver Neoplasms / pathology
  • Liver Neoplasms / therapy*
  • Mice
  • Mice, Nude
  • Mice, Transgenic
  • Promoter Regions, Genetic
  • Rats
  • Tumor Cells, Cultured
  • alpha-Fetoproteins / genetics
  • beta-Galactosidase / genetics

Substances

  • alpha-Fetoproteins
  • Diethylnitrosamine
  • Insulin-Like Growth Factor II
  • beta-Galactosidase