Rapid recovery of a functional MDR phenotype caused by MRP after a transient exposure to MDR drugs in a revertant human lung cancer cell line

Eur J Cancer. 1996 Nov;32A(12):2136-41. doi: 10.1016/s0959-8049(96)00263-8.

Abstract

Prior studies have shown that, in some human tumour cells, increased expression of the multidrug resistance gene MDR1 can be induced in response to certain stress conditions such as a transient exposure to cytotoxic agents. Little is known about the possibility of increasing the expression of the recently cloned multidrug resistance-associated protein (MRP) in response to a transient exposure to cytotoxic drugs. In order to examine this possibility, we have used sensitive assays (RT-PCR, flow cytometry) and the sensitive large cell lung cancer cell line, COR-L23/P, and the revertant line (COR-L23/Rev), generated by growing the doxorubicin-selected, MRP-overexpressing resistant variant COR-L23/R without drug exposure for 24-28 weeks. COR-L23/Rev overexpresses MRP, but to a lesser extent than COR-L23/R. COR-L23/Rev rapidly recovered similar levels of MRP mRNA, protein expression, resistance and drug accumulation deficit as COR-L23/R after a 48-72 h exposure to cytotoxic concentrations of doxorubicin or vincristine but not cisplatin. The increase in MRP mRNA could only be detected 3 to 4 days after the transient exposure to drugs. However, when the parental line, COR-L23/P, was exposed to equitoxic doses of doxorubicin, vincristine or cisplatin, no increase in the levels of MRP mRNA could be observed at higher doses (5- to 10-fold the IC50) of doxorubicin or vincristine (but not of cisplatin), we detected a transient increase in the levels of MDR1 mRNA immediately after short-term exposure. In conclusion, we have shown that a human revertant lung cancer cell line (COR-L23/Rev) has the ability to recover quickly, similar levels of MRP expression and resistance as COR-L23/R after a transient exposure to the MDR-drugs doxorubicin and vincristine.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Antineoplastic Agents / pharmacology*
  • Cisplatin / pharmacology
  • Doxorubicin / pharmacology
  • Drug Resistance, Multiple
  • Drug Resistance, Neoplasm
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Genes, MDR*
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism
  • Phenotype
  • Polymerase Chain Reaction
  • RNA, Messenger / genetics
  • RNA, Neoplasm / genetics
  • Tumor Cells, Cultured / drug effects
  • Vincristine / pharmacology

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Antineoplastic Agents
  • RNA, Messenger
  • RNA, Neoplasm
  • Vincristine
  • Doxorubicin
  • Cisplatin