Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome

Circulation. 1997 Feb 4;95(3):565-7. doi: 10.1161/01.cir.95.3.565.

Abstract

Background: Familial long-QT syndrome (LQTS) is characterized by prolonged ventricular repolarization. Clinical symptoms include recurrent syncopal attacks, and sudden death may occur due to ventricular tachyarrhythmias. Three genes responsible for this syndrome (KVLQT1, HERG, and SCN5A) have been identified so far. We investigated mutations of these genes in LQTS families.

Methods and results: Thirty-two Japanese families with LQTS were brought together for screening for mutations. Genomic DNA from each proband was examined by the polymerase chain reaction-single-strand conformation polymorphism technique followed by direct DNA sequencing. In four of the families, comprising 16 patients, mutations were identified in KVLQT1; five other families (9 patients) segregated mutant alleles of HERG. All 25 of these patients carried the specific mutations present in their respective families, and none of 80 normal individuals carried these alleles. Mutations were confirmed by endonuclease digestion or hybridization of mutant allele-specific oligonucleotides. No mutation in SCN5A was found in any family.

Conclusions: We identified nine different mutations among 32 families with LQTS. Eight of these were novel and account for 25% of all types of mutations reported to date. Such a variety of mutations makes it difficult to screen high-risk groups using simple methods such as endonuclease digestion or mutant allele-specific amplification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cation Transport Proteins*
  • DNA-Binding Proteins*
  • ERG1 Potassium Channel
  • Electrocardiography
  • Ether-A-Go-Go Potassium Channels
  • Genes*
  • Humans
  • Long QT Syndrome / genetics*
  • Long QT Syndrome / physiopathology
  • Mutation*
  • Potassium Channels / genetics*
  • Potassium Channels, Voltage-Gated*
  • Trans-Activators*
  • Transcriptional Regulator ERG

Substances

  • Cation Transport Proteins
  • DNA-Binding Proteins
  • ERG protein, human
  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels
  • KCNH2 protein, human
  • KCNH6 protein, human
  • Potassium Channels
  • Potassium Channels, Voltage-Gated
  • Trans-Activators
  • Transcriptional Regulator ERG