Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase

Arterioscler Thromb Vasc Biol. 1997 Sep;17(9):1734-40. doi: 10.1161/01.atv.17.9.1734.

Abstract

Studies in vitro have shown that copper-zinc superoxide dismutase (CuZn-SOD) inhibits a number of events putatively involved in atherogenesis, including cell-mediated oxidation of LDL. To investigate whether increased activity of CuZn-SOD reduces atherogenesis in vivo, we examined diet-induced fatty streak formation in CuZn-SOD transgenic mice (n = 24) as compared with their nontransgenic littermates (n = 28). Transgenic animals were originally created by introduction of an EcoRI-BamHI human genomic DNA fragment containing the CuZn-SOD gene and its regulatory elements into B6SJL zygotes. For the current studies, the transgene was bred for 12 generations into the atherosclerosis-susceptible C57BL/6 background. Animals were fed atherogenic diets (15% fat, 1.25% cholesterol, 0.5% Na cholate) starting at 100 weeks of age and extending for 18 weeks. At the end of the diet period, aortic SOD activity was two-fold higher in transgenics than nontransgenics (mean +/- SE: 46.7 +/- 5.8 versus 20.1 +/- 2.4 units/mg of protein, P < .001). Levels of protein-bound amino acid oxidation products (meta-, ortho-, and dityrosine) were either similar or lower in aorta and heart from transgenics as compared with nontransgenics, suggesting that amplification of CuZn-SOD activity above the normal complement had modest inhibitory effects on basal oxidative stress in these tissues. CuZn-SOD overexpression did not reduce the extent of lesion development as analyzed by quantitative lipid staining of serial sections of the proximal aorta; mean lesion areas (+/- SE) were 997 +/- 478 and 943 +/- 221 mu 2 in transgenics and nontransgenics, respectively. Notably, the range of values for lesion area was 2.2-fold greater in transgenics (0-8403 versus 0-3868 mu 2 in nontransgenics). Moreover, within this group, lesion area showed a significant positive correlation with SOD activity (r = .611, P < .03). These results do not support an antiatherogenic effect of Cu-Zn-SOD over expression and raise the possibility that high tissue SOD activity may potentiate atherogenesis in fat-fed atherosclerosis-susceptible mice [corrected].

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Aorta / metabolism
  • Aorta / pathology
  • Arteriosclerosis / etiology*
  • Arteriosclerosis / metabolism
  • Arteriosclerosis / pathology
  • Cholesterol / blood
  • Cholesterol, HDL / blood
  • Dietary Fats / administration & dosage*
  • Dietary Fats / pharmacology
  • Female
  • Humans
  • Lipoproteins / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic / genetics
  • Myocardium / metabolism
  • Oxidation-Reduction
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism*

Substances

  • Amino Acids
  • Cholesterol, HDL
  • Dietary Fats
  • Lipoproteins
  • Cholesterol
  • Superoxide Dismutase