Hirschsprung's disease: a search for etiology

Semin Pediatr Surg. 1998 Aug;7(3):140-7. doi: 10.1016/s1055-8586(98)70009-5.

Abstract

In 1967, Okamoto et al suggested that the absence of ganglion cells in Hirschsprung's disease (HD) was attributable to failure of migration of neural crest cells. The earlier the arrest of migration, the longer the aganglionic segment. Since then, this hypothesis generally has been accepted. However, subsequent experiments using mouse models of intestinal aganglionosis indicate that nerve cells may reach the correct position but then fail to develop or survive. An alternative hypothesis has been proposed that the aganglionosis may be caused by failure of differentiation as a result of microenvironmental changes after the migration has occurred. Extracellular matrix proteins are recognized as important microenvironmental factors. It has been shown that enteric neurogenesis is dependent on extracellular matrices, which provide a migration pathway for neural crest-derived cells and promote the maturation of settled neural crest-derived cells. Altered distributions of extracellular matrices have been shown in human HD cases and murine HD models, suggesting the role of extracellular matrices in the pathogenesis of HD. Recent studies suggest that intestinal smooth muscle cells, target cells of enteric neurons, play an important role in guiding and influencing its own innervation. Normal maturation was inhibited in neurons cultured with smooth muscle cells of aganglionic colon in comparison to normal colon. Furthermore, it was demonstrated that levels of neurotrophic factors, crucial in the development and survival of enteric neurons, are decreased in circular muscle layers of aganglionic colon in comparison to normoganglionic colon. The smooth muscle cells of the aganglionic colon may represent an unfavorable microenvironment for neuronal development compared with the normally innervated region. Recently, markedly increased immunoreactivity of major histocompatibility complex (MHC) class II antigens and ICAM-1 was demonstrated in aganglionic bowel, suggesting the immunological mechanisms may be involved in the etiology of HD. Genetic factors have been implicated in the etiology of this condition because HD is known to occur in families and in association with some chromosomal abnormalities. Recent expansion of molecular genetics identified multiple susceptibility genes of HD, including the RET gene, the glial cell line-derived neurotrophic factor gene, the endothelin-B receptor gene, and endothelin-3 gene. Of these, inactivating mutations of the RET gene are the most frequent, occurring in 50% of familial and 15% to 20% of sporadic cases of HD. To date, despite extensive research, the exact etiology of this condition remains poorly understood. The present report describes the authors' current understanding of and recent progress in the etiology of HD.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Adhesion Molecules
  • Extracellular Matrix
  • Hirschsprung Disease / etiology*
  • Hirschsprung Disease / genetics
  • Hirschsprung Disease / immunology
  • Hirschsprung Disease / pathology
  • Histocompatibility Antigens Class II
  • Humans
  • Intercellular Adhesion Molecule-1
  • Nerve Growth Factors
  • Neural Crest

Substances

  • Cell Adhesion Molecules
  • Histocompatibility Antigens Class II
  • Nerve Growth Factors
  • Intercellular Adhesion Molecule-1