Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2

Mol Cell Biol. 1998 Oct;18(10):6001-13. doi: 10.1128/MCB.18.10.6001.

Abstract

Nuclear hormone receptors exert transcriptional activation of target genes upon hormone induction via interactions with the basal transcription machinery. This interaction is mediated by cofactors which physically bind to receptors, thereby acting as coactivators or corepressors leading to activation or repression, respectively. Here we report the screening for and cloning of a peroxisome proliferator receptor-interacting protein, the rat homolog of TIF2. By sequence comparison with the related coactivator SRC-1, we identified three short conserved motifs (NR boxes) in both proteins which are the putative binding sites of TIF2 to nuclear hormone receptors. We demonstrate here by generation of amino acid exchanges within the NR boxes that all three boxes located in the receptor interaction domain of TIF2 are necessary and sufficient for interaction. The three boxes individually can bind to hormone receptors but display preferences in binding for certain receptors. In addition, we show that the interaction domain of TIF2 can compete with other AF-2-dependent cofactors for binding to receptors. Finally, we demonstrate cooperative binding of two TIF2 molecules to a heterodimeric nuclear receptor complex even in the presence of only one cognate ligand, indicating an allosteric effect on the heterodimeric partner upon coactivator binding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Humans
  • Mice
  • Molecular Sequence Data
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Nuclear Receptor Coactivator 2
  • Rats
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / metabolism*
  • Receptors, Glucocorticoid / genetics
  • Receptors, Glucocorticoid / metabolism
  • Receptors, Retinoic Acid / genetics
  • Receptors, Retinoic Acid / metabolism
  • Receptors, Thyroid Hormone / genetics
  • Receptors, Thyroid Hormone / metabolism
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Retinoid X Receptors
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • NCOA2 protein, human
  • Ncoa2 protein, mouse
  • Ncoa2 protein, rat
  • Nuclear Proteins
  • Nuclear Receptor Coactivator 2
  • Receptors, Cytoplasmic and Nuclear
  • Receptors, Glucocorticoid
  • Receptors, Retinoic Acid
  • Receptors, Thyroid Hormone
  • Recombinant Fusion Proteins
  • Retinoid X Receptors
  • Transcription Factors

Associated data

  • GENBANK/AF136943