|
methane |
|
CHEBI:16183 |
|
A one-carbon compound in which the carbon is attached by single bonds to four hydrogen atoms. It is a colourless, odourless, non-toxic but flammable gas (b.p. −161°C). |
|
This entity has been manually annotated by the ChEBI Team.
|
|
CHEBI:6811, CHEBI:14585, CHEBI:25220
|
|
ChemicalBook:CB02709596, ChemicalBook:CB9374483, ChemicalBook:CB9767902, ChemicalBook:CB3109508, ChemicalBook:CB2499424, eMolecules:6200341, eMolecules:475069 |
|
Molfile
XML
SDF
|
|
more structures >>
|
|
call loadScript javascripts\jsmol\core\package.js call loadScript javascripts\jsmol\core\core.z.js -- required by ClazzNode call loadScript javascripts\jsmol\J\awtjs2d\WebOutputChannel.js
|
Methane (US: METH-ayn, UK: MEE-thayn) is a chemical compound with the chemical formula CH4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it is difficult because it is a gas at standard temperature and pressure. In the Earth's atmosphere methane is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Methane is an organic compound, and among the simplest of organic compounds. Methane is also a hydrocarbon.
Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes. The largest reservoir of methane is under the seafloor in the form of methane clathrates. When methane reaches the surface and the atmosphere, it is known as atmospheric methane.
The Earth's atmospheric methane concentration has increased by about 160% since 1750, with the overwhelming percentage caused by human activity. It accounted for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases, according to the 2021 Intergovernmental Panel on Climate Change report. Strong, rapid and sustained reductions in methane emissions could limit near-term warming and improve air quality by reducing global surface ozone.
Methane has also been detected on other planets, including Mars, which has implications for astrobiology research. |
Read full article at Wikipedia
|
VNWKTOKETHGBQD-UHFFFAOYSA-N |
|
greenhouse gas
A gas in an atmosphere that absorbs and emits radiation within the thermal infrared range, so contributing to the 'greenhouse effect'.
|
|
bacterial metabolite
Any prokaryotic metabolite produced during a metabolic reaction in bacteria.
|
|
fossil fuel
A fuel such as coal, oil and natural gas which has formed over many years through the decomposition of deposited vegetation which was under extreme pressure of an overburden of earth.
|
|
View more via ChEBI Ontology
methane
|
tetrahydridocarbon
|
CH4
|
IUPAC
|
marsh gas
|
NIST Chemistry WebBook
|
metano
|
ChEBI
|
Methan
|
ChEBI
|
Methane
|
KEGG COMPOUND
|
methane
|
UniProt
|
méthane
|
ChEBI
|
methyl hydride
|
ChemIDplus
|
1718732
|
Reaxys Registry Number
|
Reaxys
|
59
|
Gmelin Registry Number
|
Gmelin
|
74-82-8
|
CAS Registry Number
|
KEGG COMPOUND
|
74-82-8
|
CAS Registry Number
|
ChemIDplus
|
74-82-8
|
CAS Registry Number
|
NIST Chemistry WebBook
|
Moraes LE, Strathe AB, Fadel JG, Casper DP, Kebreab E (2014) Prediction of enteric methane emissions from cattle. Global change biology 20, 2140-2148 [PubMed:24259373] [show Abstract] Agriculture has a key role in food production worldwide and it is a major component of the gross domestic product of several countries. Livestock production is essential for the generation of high quality protein foods and the delivery of foods in regions where animal products are the main food source. Environmental impacts of livestock production have been examined for decades, but recently emission of methane from enteric fermentation has been targeted as a substantial greenhouse gas source. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. The predictive ability of current methane emission models remains poor. Moreover, the availability of information on livestock production systems has increased substantially over the years enabling the development of more detailed methane prediction models. In this study, we have developed and evaluated prediction models based on a large database of enteric methane emissions from North American dairy and beef cattle. Most probable models of various complexity levels were identified using a Bayesian model selection procedure and were fitted under a hierarchical setting. Energy intake, dietary fiber and lipid proportions, animal body weight and milk fat proportion were identified as key explanatory variables for predicting emissions. Models here developed substantially outperformed models currently used in national greenhouse gas inventories. Additionally, estimates of repeatability of methane emissions were lower than the ones from the literature and multicollinearity diagnostics suggested that prediction models are stable. In this context, we propose various enteric methane prediction models which require different levels of information availability and can be readily implemented in national greenhouse gas inventories of different complexity levels. The utilization of such models may reduce errors associated with prediction of methane and allow a better examination and representation of policies regulating emissions from cattle. | Lima Pde M, Oliveira PB, Campeche A, Moreira GD, Paim Tdo P, McManus C, Abdalla AL, Dantas AM, de Souza JR, Louvandini H (2014) Methane emission of Santa Inês sheep fed cottonseed by-products containing different levels of gossypol. Tropical animal health and production 46, 285-288 [PubMed:24132456] [show Abstract] The aim of this study was to evaluate the methane (CH4) emission of Santa Inês sheep fed cottonseed by-products, verifying if the gossypol content of these feedstuffs affects CH4 emission. Twelve late-lactating Santa Inês sheep (44.8 ± 7.5 kg body weight (BW)) were allocated in metabolic cages for an experimental period of 19 days, 14 days for adaptation and 5 days for measuring CH4 emission and dry matter intake (DMI). The animals were divided into four treatments, established in accordance with the cottonseed by-product used in concentrate formulation: Control (CON - no cottonseed by-product), Whole cottonseed (WCS), Cottonseed cake (CSC), and Cottonseed meal (CSM). The free gossypol level of the concentrates were 0, 1,276, 350, and 190 ppm for CON, WCS, CSC, and CSM, respectively. Also, the animals received Cynodon dactylon cv. Coast Cross hay, water, and mineral salt ad libitum. The ether extract content of the diets was balanced between treatments by including soybean oil in concentrates. The technique used to measure the CH4 emission was the sulfur hexafluoride (SF6) tracer technique, and the gas samples collected were quantified by analysis in gas chromatography system. The CH4 emission was evaluated considering the daily emission (g CH4/day); DMI (g CH4/kg DMI); and BW (g CH4/kg BW). No statistical difference was found (P > 0.05) between treatments for DMI and CH4 parameters. In the regression analysis, no significant relation (P > 0.05) between gossypol content and CH4 emission was observed. These results suggest that gossypol does not affect rumen methanogenesis. | McGinn SM (2013) Developments in micrometeorological methods for methane measurements. Animal : an international journal of animal bioscience 7 Suppl 2, 386-393 [PubMed:23739479] [show Abstract] Micrometeorological techniques can be applied to estimate methane (CH4) emissions from ruminants and livestock manure using CH4 concentration measured within the internal surface boundary layer. The main advantage of these techniques is that they are non-intrusive, thereby eliminating the impact of the measurement set-up on the calculated CH4 emission. This review focuses on four micrometeorological techniques, namely, the integrated horizontal flux (IHF), flux gradient (FG), eddy covariance (EC) and the dispersion modelling using the backward Lagrangian stochastic method (BLS). Each technique has unique advantages and limitations when used for estimating enteric (ruminant) and manure CH4 emissions. The IHF technique may be theoretically simpler then the FG, EC or BLS techniques, but all require high-resolution instruments to measure concentration. The EC and BLS techniques also require a measurement of the wind statistics. This review discusses the appropriate use of these four micrometeorological techniques for estimating CH4 emissions in animal agriculture and the recent advances in measurement technology. | Nielsen DA, Schramm A, Nielsen LP, Revsbech NP (2013) Seasonal methane oxidation potential in manure crusts. Applied and environmental microbiology 79, 407-410 [PubMed:23104415] [show Abstract] Organic crusts on liquid manure storage tanks harbor ammonia- and nitrite-resistant methane oxidizers and may significantly reduce methane emissions. Methane oxidation potential (0.6 mol CH(4) m(-2) day(-1)) peaked during fall and winter, after 4 months of crust development. Consequences for methane mitigation potential of crusts are discussed. | Wahlquist ÅK (2013) Eating beef: cattle, methane and food production. Asia Pacific journal of clinical nutrition 22, 16-24 [PubMed:23353606] [show Abstract] A number of prominent people have advocated eating less meat or becoming a vegetarian to reduce global warming, because cattle produce the greenhouse gas methane. This raises a number of questions including: what will happen to the grasslands that much of the world's cattle currently graze; how will alternate protein be produced, and what will the greenhouse consequences of that production be? It comes down to production systems. About 70 per cent of the world's agricultural land is grassland, and the only way to produce food from grasslands is to graze ruminants on it. If domesticated animals do not graze the grasslands, native or feral ruminants, which also produce methane, tend to move in. Feeding high quality grain to cattle is much less defensible. Replacing animal protein with plant proteins like soybeans necessitates more cropping land, water, fuel and chemicals being used. A more rational food system would raise cattle on grasslands but not feed them high quality grains. Instead more of the currently grown crop could be devoted to human consumption. | Guzmán-Marmolejo A, Segura A, Escobar-Briones E (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13, 550-559 [PubMed:23742231] [show Abstract] On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. | Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental microbiology 15, 2395-2417 [PubMed:23718889] [show Abstract] Methane is an important greenhouse gas and microbes in the environment play major roles in both global methane emissions and terrestrial sinks. However, a full mechanistic understanding of the response of the methane cycle to global change is lacking. Recent studies suggest that a number of biological and environmental processes can influence the net flux of methane from soils to the atmosphere but the magnitude and direction of their impact are still debated. Here, we synthesize recent knowledge on soil microbial and biogeochemical process and the impacts of climate change factors on the soil methane cycle. We focus on (i) identification of the source and magnitude of methane flux and the global factors that may change the flux rate and magnitude in the future, (ii) the microbial communities responsible for methane production and terrestrial sinks, and (iii) how they will respond to future climatic scenarios and the consequences for feedback responses at a global scale. We also identify the research gaps in each of the topics identified above, provide evidence which can be used to demonstrate microbial regulation of methane cycle and suggest that incorporation of microbial data from emerging -omic technologies could be harnessed to increase the predictive power of simulation models. | Narvenkar G, Naqvi SW, Kurian S, Shenoy DM, Pratihary AK, Naik H, Patil S, Sarkar A, Gauns M (2013) Dissolved methane in Indian freshwater reservoirs. Environmental monitoring and assessment 185, 6989-6999 [PubMed:23397538] [show Abstract] Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian reservoirs have the potential to emit as much as 33.5 MT of CH4 per annum to the atmosphere. However, this estimate is based on assumptions rather than actual measurements. We present here the first data on dissolved CH4 concentrations from eight freshwater reservoirs in India, most of which experience seasonal anaerobic conditions and CH4 buildup in the hypolimnia. However, strong stratification prevents the CH4-rich subsurface layers to ventilate CH4 directly to the atmosphere, and surface water CH4 concentrations in these reservoirs are generally quite low (0.0028-0.305 μM). Moreover, only in two small reservoirs substantial CH4 accumulation occurred at depths shallower than the level where water is used for power generation and irrigation, and in the only case where measurements were made in the outflowing water, CH4 concentrations were quite low. In conjunction with short periods of CH4 accumulation and generally lower concentrations than previously assumed, our study implies that CH4 emission from Indian reservoirs has been greatly overestimated. | Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013) Methane capture from livestock manure. Journal of environmental management 117, 187-207 [PubMed:23376302] [show Abstract] It has been estimated that livestock manure contributes about 240 million metric tons of carbon dioxide equivalent of methane to the atmosphere and represents one of the biggest anthropogenic sources of methane. Considering that methane is the second biggest contributor to global warming after carbon dioxide, it is imperative that ways and means are developed to capture as much of the anthropogenic methane as possible. There is a major associated advantage of methane capture: its use as a source of energy which is comparable in 'cleanness' to natural gas. The present review dwells upon the traditional ways of methane capture used in India, China, and other developing countries for providing energy to the rural poor. It then reviews the present status of methane capture from livestock manure in developed countries and touches upon the prevalent trends. | Zhou X, Smaill SJ, Clinton PW (2013) Methane oxidation needs less stressed plants. Trends in plant science 18, 657-659 [PubMed:24161402] [show Abstract] Methane oxidation rates in soil are liable to be reduced by plant stress responses to climate change. Stressed plants exude ethylene into soil, which inhibits methane oxidation when present in the soil atmosphere. Here we discuss opportunities to use 1-aminocyclopropane-1-carboxylate deaminase to manage methane oxidation by regulating plant stress responses. | Heyer KU, Hupe K, Stegmann R (2013) Methane emissions from MBT landfills. Waste management (New York, N.Y.) 33, 1853-1860 [PubMed:23756351] [show Abstract] Within the scope of an investigation for the German Federal Environment Agency ("Umweltbundesamt"), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18-24 m(3)CH(4)/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH(4)/(m(2)h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000-135,000 t CO(2-eq.)/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government. | Abelson PH (1982) Methane: a motor fuel. Science (New York, N.Y.) 218, 641 [PubMed:17791569] |
|