Hmdb loader
Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-09-22 17:43:46 UTC
HMDB IDHMDB0001442
Secondary Accession Numbers
  • HMDB01442
Metabolite Identification
Common NameProstaglandin E1
DescriptionProstaglandin E1 (PGE1) is a potent endogenous vasodilator agent that increases peripheral blood flow. It inhibits platelet aggregation and has many other biological effects such as bronchodilation, mediation of inflammation, and various protective functions. The protective action of PGE1 has been shown on both experimental animal models of liver injury and patients with fulminant viral hepatitis. PGE1-treated cirrhotic rats had less hepatosplenomegaly, lower serum alanine aminotransferase levels and portal pressures, and higher arterial pressure than placebo-treated cirrhotic rats. There are several mechanisms of PGE1 hepatic cytoprotection: inhibiting T-cell mediated cytotoxicity, enhancing DNA synthesis of the injured liver after partial hepatectomy by stimulating cyclic AMP production, increasing ATP level in hepatic tissue to accelerate the recovery of mitochondrial respiratory function after reperfusion, and stabilizing membrane microviscosity. PGE1 is a prostanoid. The term prostanoid collectively describes prostaglandins, prostacyclins, and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They are derived from C-20 polyunsaturated fatty acids, mainly dihomo-γ-linolenic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2) (PMID: 11819590 , 16986207 ). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways.
Structure
Thumb
Synonyms
Chemical FormulaC20H34O5
Average Molecular Weight354.487
Monoisotopic Molecular Weight354.240624195
IUPAC Name7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoic acid
Traditional Namealprostadil
CAS Registry Number745-65-3
SMILES
CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O
InChI Identifier
InChI=1S/C20H34O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h12-13,15-17,19,21,23H,2-11,14H2,1H3,(H,24,25)/b13-12+/t15-,16+,17+,19+/m0/s1
InChI KeyGMVPRGQOIOIIMI-DWKJAMRDSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentProstaglandins and related compounds
Alternative Parents
Substituents
  • Prostaglandin skeleton
  • Long-chain fatty acid
  • Fatty alcohol
  • Hydroxy fatty acid
  • Cyclopentanol
  • Cyclic alcohol
  • Cyclic ketone
  • Ketone
  • Secondary alcohol
  • Carboxylic acid
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Organic oxygen compound
  • Carbonyl group
  • Organooxygen compound
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point115 - 116 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP3.20AVDEEF,A ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
Biospecimen Locations
  • Blood
  • Urine
Tissue Locations
  • Epidermis
  • Fibroblasts
  • Kidney
  • Liver
  • Neuron
  • Placenta
  • Platelet
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified<0.0001 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.0000037 (0.0000034-0.0000051) uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified<0.0001 uMAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4444306
KEGG Compound IDC04741
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkProstaglandin_E1
METLIN IDNot Available
PubChem Compound5280723
PDB IDNot Available
ChEBI ID15544
Food Biomarker OntologyNot Available
VMH IDPROSTGE1
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceLiang, Yong-tao; Wei, Feng-ping; Li, Gui-ying; Wang, En-si. Chemoenzymic synthesis of prostaglandin E1. Jilin Daxue Ziran Kexue Xuebao (2001), (2), 77-80.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione.
Gene Name:
CBR1
Uniprot ID:
P16152
Molecular weight:
30374.73