Activation of RelA homodimers by tumour necrosis factor alpha: a possible transcriptional activator in human vascular endothelial cells

Biochem J. 2005 Aug 15;390(Pt 1):317-24. doi: 10.1042/BJ20041659.

Abstract

In vascular endothelial cells, cytokines induce genes that are expressed in inflammatory lesions partly through the activation of transcription factor NF-kappaB (nuclear factor-kappaB). Among the members of the NF-kappaB/rel protein family, homodimers of the RelA subunit of NF-kappaB can also function as strong transactivators when expressed in cells. However, the functional role of endogenous RelA homodimers has not been clearly elucidated. We investigated whether RelA homodimers are induced in cytokine-treated vascular endothelial cells. Gel mobility-shift and supershift assays revealed that a cytokine TNFalpha (tumour necrosis factor alpha) activated both NF-kappaB1/RelA heterodimers and RelA homodimers that bound to a canonical kappaB sequence, IgkappaB (immunoglobulin kappaB), in SV40 (simian virus 40) immortalized HMEC-1 (human dermal microvascular endothelial cell line 1). In HMEC-1 and HUVEC (human umbilical-vein endothelial cells), TNFalpha also induced RelA homodimers that bound to the sequence 65-2kappaB, which specifically binds to RelA homodimers but not to NF-kappaB1/RelA heterodimers in vitro. Deoxycholic acid, a detergent that can dissociate the NF-kappaB-IkappaB complex (where IkappaB stands for inhibitory kappaB), induced the binding of the RelA homodimers to 65-2kappaB from the cytosolic fraction of resting HMEC-1. Furthermore, TNFalpha induced the transcriptional activity of a reporter gene that was driven by 65-2kappaB in HMEC-1. These results suggest that in addition to NF-kappaB1/RelA heterodimers, TNFalpha also induces RelA homodimers that are functionally active. Thus RelA homodimers may actively participate in cytokine regulation of gene expression in human vascular endothelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cells, Cultured
  • Endothelial Cells / metabolism*
  • Gene Expression Regulation
  • Genes, Reporter
  • Humans
  • NF-kappa B / chemistry*
  • Protein Transport / physiology
  • Transcription Factor RelA
  • Tumor Necrosis Factor-alpha / chemistry*

Substances

  • NF-kappa B
  • Transcription Factor RelA
  • Tumor Necrosis Factor-alpha