Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases

Development. 2006 Mar;133(6):1133-42. doi: 10.1242/dev.02255. Epub 2006 Feb 15.

Abstract

Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / growth & development
  • Drosophila melanogaster / metabolism
  • Gene Expression Regulation, Developmental
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Phosphotyrosine / metabolism
  • Protein Binding
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatases / genetics
  • Protein Tyrosine Phosphatases / metabolism*
  • Protein Tyrosine Phosphatases, Non-Receptor
  • Protein-Tyrosine Kinases / metabolism
  • Signal Transduction
  • Substrate Specificity

Substances

  • Drosophila Proteins
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • sty protein, Drosophila
  • Phosphotyrosine
  • Protein-Tyrosine Kinases
  • Csw protein, Drosophila
  • PTPN11 protein, human
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatases
  • Protein Tyrosine Phosphatases, Non-Receptor