Expression of steroid receptor coactivator-1 was regulated by postnatal development but not ovariectomy in the hippocampus of rats

Dev Neurosci. 2011;33(1):57-63. doi: 10.1159/000322978. Epub 2011 Jan 11.

Abstract

Female steroids such as estrogens and progestins, through their nuclear receptors, play important roles in regulation of the structure and function of the hippocampus. Steroid receptor coactivator-1 (SRC-1) has been detected in embryonic and/or adult hippocampus of rodents, and SRC-1 null mice showed significantly longer escape latency in the Morris maze test, indicating a role of this coactivator in the regulation of hippocampus function. Whether this is regulated by development and circulating ovary hormones remains unclear. In this study, postnatal development and ovariectomy for regulation of hippocampal SRC-1 in female rats were investigated by Western blot and immunohistochemistry. The results showed that SRC-1-immunopositive materials were predominantly detected in the CA1 pyramidal cell layer and dentate gyrus granular cell layer. Very low levels of SRC-1 were detected at postnatal day 0, but they increased with development. The highest levels of SRC-1 were detected at postnatal day 14, then they decreased to adult levels from postnatal day 30; significantly lower levels of SRC-1 were detected in the middle-aged (18-month-old) hippocampus when compared with that of the adult. Western blot and immunohistochemistry demonstrated that hippocampal SRC-1 expression was unchanged after ovariectomy, no significant differences were noticed from day 3 to 8 weeks postsurgery when compared with sham animals. The above results showed that hippocampal SRC-1 is regulated by postnatal development but not ovariectomy, and that the exact role of SRC-1 in the estradiol regulation of hippocampus needs further investigation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Estrogens / metabolism
  • Female
  • Hippocampus / cytology
  • Hippocampus / growth & development*
  • Hippocampus / metabolism*
  • Mice
  • Nuclear Receptor Coactivator 1 / metabolism*
  • Ovariectomy*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Estrogens
  • Nuclear Receptor Coactivator 1