Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex

Biochemistry. 2015 Jun 30;54(25):3880-9. doi: 10.1021/bi5014497. Epub 2015 Jun 18.

Abstract

Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Circular Dichroism
  • Frataxin
  • Humans
  • Iron / metabolism
  • Iron-Binding Proteins / genetics
  • Iron-Binding Proteins / metabolism*
  • Iron-Sulfur Proteins / chemistry
  • Iron-Sulfur Proteins / genetics
  • Iron-Sulfur Proteins / metabolism*
  • Kinetics
  • Sulfur / metabolism

Substances

  • Iron-Binding Proteins
  • Iron-Sulfur Proteins
  • Sulfur
  • Iron