Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis

Ann Rheum Dis. 2021 Apr;80(4):413-422. doi: 10.1136/annrheumdis-2020-218089. Epub 2020 Nov 6.

Abstract

Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.

Keywords: chondrocytes; cytokines; knee; osteoarthritis.

Publication types

  • Review

MeSH terms

  • Aged
  • Bone and Bones / metabolism
  • Cartilage, Articular* / metabolism
  • Endothelial Cells / metabolism
  • Humans
  • Osteoarthritis* / pathology
  • Pain