CG11426 gene product negatively regulates glial population size in the Drosophila eye imaginal disc

Dev Neurobiol. 2021 Sep;81(6):805-816. doi: 10.1002/dneu.22838. Epub 2021 Jul 5.

Abstract

Glial cells play essential roles in the nervous system. Although glial populations are tightly regulated, the mechanisms regulating the population size remain poorly understood. Since Drosophila glial cells are similar to the human counterparts in their functions and shapes, rendering them an excellent model system to understand the human glia biology. Lipid phosphate phosphatases (LPPs) are important for regulating bioactive lipids. In Drosophila, there are three known LPP-encoding genes: wunen, wunen-2, and lazaro. The wunens are important for germ cell migration and survival and septate junction formation during tracheal development. Lazaro is involved in phototransduction. In the present study, we characterized a novel Drosophila LPP-encoding gene, CG11426. Suppression of CG11426 increased glial cell number in the eye imaginal disc during larval development, while ectopic CG11426 expression decreased it. Both types of mutation also caused defects in axon projection to the optic lobe in larval eye-brain complexes. Moreover, CG11426 promoted apoptosis via inhibiting ERK signaling in the eye imaginal disc. Taken together, these findings demonstrated that CG11426 gene product negatively regulates ERK signaling to promote apoptosis for proper maintenance of the glial population in the developing eye disc.

Keywords: CG11426; ERK signaling; apoptosis; glia; lipid phosphate phosphatase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila* / metabolism
  • Eye / metabolism
  • Imaginal Discs / metabolism
  • Neuroglia / metabolism
  • Population Density

Substances

  • Drosophila Proteins