New pathogenic variants of ALMS1 gene in two Chinese families with Alström Syndrome

BMC Ophthalmol. 2022 Sep 26;22(1):386. doi: 10.1186/s12886-022-02597-3.

Abstract

Purpose: Alström Syndrome (AS) is an autosomal recessive hereditary disease with the characteristics of multiorgan dysfunction. Due to the heterogeneity of clinical manifestations of AS, genetic testing is crucial for the diagnosis of AS. Herein, we used whole-exome sequencing (WES) to determine the genetic causes and characterize the clinical features of three affected patients in two Chinese families with Alström Syndrome.

Materials and methods: Three affected patients (initially diagnosed as achromatopsia). and five asymptomatic members were recruited for both genetic and clinical tests. The complete ophthalmic examinations and systemic examinations were performed on all participants. Whole exome sequencing (WES) was performed for mutation detection. The silico analysis was also applied to predict the pathogenesis of identified pathogenic variants.

Results: In family 1, the proband showed low vision, hyperopia, photophobia, nystagmus, and total color blindness. DNA analysis revealed that she carried a compound heterozygote with two novel pathogenic variants in the ALMS1 gene NM_015120.4:c.10379del (NP_055935.4:p.(Asp2252Tyr)) and NM_015120.4:c.11641_11642del (NP_055935.4:p.(Val3881ThrfsTer11)). Further systemic examinations showed short stature, acanthosis nigricans, and sensorineural hearing loss. In family 2, two affected siblings presented the low vision, hyperopia, photophobia, nystagmus, and total color blindness. DNA analysis revealed that they carried a same compound heterozygote with two novel pathogenic variants in the ALMS1 gene NM_015120.4:c.10379del (NP_055935.4:p.(Asn3460IlefsTer49)), NM_015120.4:c.10819C > T (NP_055935.4:p.(Arg3607Trp)). Further systemic examinations showed obesity and mild abnormalities of lipid metabolism. According to the genetic testing results and further systemic analysis, the three affected patients were finally diagnosed as Alström Syndrome (AS).

Conclusions: We found two new compound heterozygous pathogenic variants of the ALMS1 gene and determined the diagnosis as Alström Syndrome in three patients of two Chinese families. Our study extends the genotypic and phenotypic spectrums for ALMS1 -AS and emphasizes the importance of gene testing in assisting the clinical diagnosis for cases with phenotypic diversities, which would help the AS patients with early diagnosis and treatment to reduce future systemic damage.

Keywords: ALMS1; Alström Syndrome; Clinical manifestation; Gene mutation; Pathogenicity.

MeSH terms

  • Alstrom Syndrome* / diagnosis
  • Alstrom Syndrome* / genetics
  • Cell Cycle Proteins / genetics
  • China
  • Color Vision Defects
  • DNA / genetics
  • Female
  • Humans
  • Hyperopia*
  • Mutation
  • Pedigree
  • Photophobia
  • Vision, Low*

Substances

  • ALMS1 protein, human
  • Cell Cycle Proteins
  • DNA

Supplementary concepts

  • Achromatopsia 2