Skip to main content
Log in

Kinetics of the Reverse Mode of the Na+/Glucose Cotransporter

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

This study investigates the reverse mode of the Na+/glucose cotransporter (SGLT1). In giant excised inside-out membrane patches from Xenopus laevis oocytes expressing rabbit SGLT1, application of α-methyl-D-glucopyranoside (αMDG) to the cytoplasmic solution induced an outward current from cytosolic to external membrane surface. The outward current was Na+- and sugar-dependent, and was blocked by phlorizin, a specific inhibitor of SGLT1. The current-voltage relationship saturated at positive membrane voltages (30–50 mV), and approached zero at −150 mV. The half-maximal concentration for αMDG-evoked outward current (K αMDG0.5 ) was 35 mM (at 0 mV). In comparison, K αMDG0.5 for forward sugar transport was 0.15 mM (at 0 mV). K Na0.5 was similar for forward and reverse transport (≈35 mM at 0 mV). Specificity of SGLT1 for reverse transport was: αMDG (1.0) > D-galactose (0.84) > 3-O-methyl-glucose (0.55) > D-glucose (0.38), whereas for forward transport, specificity was: αMDG ≈ D-glucose ≈ D-galactose > 3-O-methyl-glucose. Thus there is an asymmetry in sugar kinetics and specificity between forward and reverse modes. Computer simulations showed that a 6-state kinetic model for SGLT1 can account for Na+/sugar cotransport and its voltage dependence in both the forward and reverse modes at saturating sodium concentrations. Our data indicate that under physiological conditions, the transporter is poised to accumulate sugar efficiently in the enterocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abramson J., Smirnova I., Kasho V., Verner G., Kaback H.R., Iwata S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  Google Scholar 

  • Birnir B., Loo D.D.F., Wright E.M. 1991. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine. Pfluegers Arch. 418:79–85

    Article  Google Scholar 

  • Chen X.-Z., Coady M.J., Jackson F., Berteloot A., Lapointe J.-Y. 1995. Thermodynamic determination of the Na+:glucose coupling ratio for the human SGLT1 cotransporter. Biophys. J. 69:2405–2414

    PubMed  Google Scholar 

  • Díez-Sampedro A., Wright E.M., Hirayama B.A. 2001. Residue 457 controls sugar binding and transport in the Na+/glucose cotransporter. J. Biol. Chem. 276:49188–48194

    Article  PubMed  Google Scholar 

  • Eskandari, S., Loo, D.D.F., Wright, E.M. 1999. Functional asymmetry of the sodium/glucose cotransported. FASEB J. Abs. 399

  • Falk S., Guay A., Chenu C., Patil S.D., Berteloot A. 1998. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program. Biophys. J. 74:816–830

    PubMed  Google Scholar 

  • Firnges M.A., Lin J.-T., Kinne R.K.-H. 2001. Functional asymmetry of the sodium-D-glucose cotransporter expressed in yeast secretory vesicles. J. Membrane Biol. 179:143–153

    Article  Google Scholar 

  • Guan L., Kaback H.R. 2004. Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. Proc. Natl. Acad. Sci. USA 101:12148–12152

    Article  PubMed  Google Scholar 

  • Hazama A., Loo D.D.F., Wright E.M. 1997. Presteady-state currents of the Na+/glucose cotransporter (SGLT1). J. Membrane Biol. 155:175–186

    Article  Google Scholar 

  • Hediger M.A., Cody M.J., Ikeda T.S., Wright E.M. 1987. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330:379–381

    Article  PubMed  Google Scholar 

  • Hilgemann D.W. 1995. The giant membrane patch. In: Single Channel Recording, 2nd edn, B. Sakmann, E. Neher, editors. pp. 307–327. Plenum, New York

    Google Scholar 

  • Hirayama B.A., Loo D.D.F., Wright E.M. 1997. Cation effects on protein conformation and transport in the Na+/glucose cotransporter. J. Biol. Chem. 272:2110–2115

    Article  PubMed  Google Scholar 

  • Hirayama B.A., Lostao M.P., Panayotova-Heiermann M., Loo D.D.F., Turk E., Wright E.M. 1996. Kinetic and specificity differences between the rat, human and rabbit Na+-glucose cotransporters (SGLT-1). Am. J. Physiol. 270:G919–G926

    PubMed  Google Scholar 

  • Ikeda T.S., Hwang E.-S., Coady M.J., Hirayama B.A., Hediger M.A., Wright E.M. 1989. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J. Membrane Biol. 110:87–95

    Article  Google Scholar 

  • Kaunitz J.D., Wright E.M. 1984. Kinetics of sodium D-glucose cotransporter in bovine intestinal brush border vesicles. J. Membrane Biol. 79:41–51

    Article  Google Scholar 

  • Kessler M., Semenza G. 1983. The small-intestinal Na+, D-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ. J. Membrane Biol. 76:27–56

    Article  Google Scholar 

  • Loo D.D.F., Eskandari S., Hirayama B.A., Wright E.M. 2002. A kinetic model for secondary active transport. In: Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and its Applications. Vol. 129. H.E. Layton, A.M. Weinstein, editors, pp. 65–83. Springer-Verlag, New York

    Google Scholar 

  • Loo D.D.F., Hazama A., Supplisson S., Turk E., Wright E.M. 1993. Relaxation kinetics of the Na+/glucose cotransporter. Proc. Natl. Acad. Sci. USA 90:5767–5771

    PubMed  Google Scholar 

  • Loo D.D.F., Hirayama B.A., Gallardo E., Lam J., Turk E., Wright E.M. 1998. Conformational changes couple Na+ and glucose transport. Proc. Natl. Acad. Sci. USA 95:7789–7794

    Article  PubMed  Google Scholar 

  • Mackenzie B., Loo D.D.F., Wright E.M. 1998. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J. Membrane Biol. 162:101–106

    Google Scholar 

  • Meinild A.-K., Hirayama B.A., Wright E.M., Loo D.D.F. 2002. Fluorescence studies of ligand-induced conformational changes of the Na+/glucose cotransporter. Biochemistry 41:1250–1258

    PubMed  Google Scholar 

  • Panayotova-Heiermann M., Loo D.D.F., Wright E.M. 1995. Kinetics of steady state and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270:27099–27105

    PubMed  Google Scholar 

  • Parent L., Supplisson S., Loo D.D.F., Wright E.M. 1992a. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J. Membrane Biol. 125:49–62

    Google Scholar 

  • Parent L., Supplisson S., Loo D.D.F., Wright E.M. 1992b. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J. Membrane Biol. 125:63–79

    Google Scholar 

  • Parent L., Supplisson S., Loo D.D.F., Wright E.M. 1992c. Errata. J. Membrane Biol. 130:203

    Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. 1986. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Quick M., Tomasevic J., Wright E.M. 2003. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Biochemistry 42:9147–9152

    PubMed  Google Scholar 

  • Sauer G.A., Nagel G., Koepsell H., Bamberg E., Hartung K. 2000. Voltage and substrate dependence of the inverse transport mode of the rabbit Na+/glucose cotransporter (SGLT1). FEBS Lett. 469:98–100

    PubMed  Google Scholar 

  • Segal I.H. 1975. Enzyme kinetics. Wiley-Interscience, New York

    Google Scholar 

  • Umbach J.A., Coady M.J., Wright E.M. 1990. The intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Biophys. J. 57:1217–1224

    PubMed  Google Scholar 

  • Wang D., Deken S.L., Whitworth T.L., Quick M.W. 2003. Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol. Pharmacol. 64:905–913

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Manuela Contreras for her assistance with the oocytes, and Drs. Andrea Doering and Ken Phillipson for guidance in establishing the giant-patch method. This work was supported by NIH grant DK-19567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.D.F. Loo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskandari, S., Wright, E. & Loo, D. Kinetics of the Reverse Mode of the Na+/Glucose Cotransporter. J Membrane Biol 204, 23–32 (2005). https://doi.org/10.1007/s00232-005-0743-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0743-x

Keywords

Navigation