Hmdb loader
Read more...Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-07-07 20:53:56 UTC
HMDB IDHMDB0000641
Secondary Accession Numbers
  • HMDB00641
Metabolite Identification
Common NameGlutamine
Description
Structure
Thumb
Synonyms
Chemical FormulaC5H10N2O3
Average Molecular Weight146.1445
Monoisotopic Molecular Weight146.069142196
IUPAC Name(2S)-2-amino-4-carbamoylbutanoic acid
Traditional NameL-glutamine
CAS Registry Number56-85-9
SMILES
N[C@@H](CCC(N)=O)C(O)=O
InChI Identifier
InChI=1S/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H2,7,8)(H,9,10)/t3-/m0/s1
InChI KeyZDXPYRJPNDTMRX-VKHMYHEASA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentL-alpha-amino acids
Alternative Parents
Substituents
  • L-alpha-amino acid
  • Fatty acid
  • Amino acid
  • Carboximidic acid
  • Carboximidic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Amine
  • Hydrocarbon derivative
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Primary aliphatic amine
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationSource
Process
Naturally occurring process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point185 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility41.3 mg/mLYALKOWSKY,SH & DANNENFELSER,RM (1992)
LogP-3.64CHMELIK,J ET AL. (1991)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg126.030932474
[M-H]-Baker132.10630932474
[M-H]-MetCCS_test_neg124.630932474
[M+H]+Baker133.44730932474
[M+H]+Astarita_pos124.330932474
[M-H]-Not Available126.8http://allccs.zhulab.cn/database/detail?ID=AllCCS00000087
[M+H]+Not Available130.9http://allccs.zhulab.cn/database/detail?ID=AllCCS00000087
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Mitochondria
Biospecimen Locations
  • Blood
  • Breast Milk
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Sweat
  • Urine
Tissue Locations
  • Adipose Tissue
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Neuron
  • Pancreas
  • Placenta
  • Prostate
  • Skeletal Muscle
  • Spleen
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Epilepsy
  1. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
Schizophrenia
  1. Alfredsson G, Wiesel FA: Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology (Berl). 1989;99(3):322-7. [PubMed:2480613 ]
  2. He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D: Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry. 2012 Aug 14;2:e149. doi: 10.1038/tp.2012.76. [PubMed:22892715 ]
  3. Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA: Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry. 1985 Sep;147:276-82. [PubMed:2415198 ]
Carbamoyl Phosphate Synthetase Deficiency
  1. G.Frauendienst-Egger, Friedrich K. Trefz (2017). MetaGene: Metabolic & Genetic Information Center (MIC: http://www.metagene.de). METAGENE consortium.
Colorectal cancer
  1. Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14. [PubMed:25105552 ]
  2. Ikeda A, Nishiumi S, Shinohara M, Yoshie T, Hatano N, Okuno T, Bamba T, Fukusaki E, Takenawa T, Azuma T, Yoshida M: Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 2012 May;26(5):548-58. doi: 10.1002/bmc.1671. Epub 2011 Jul 20. [PubMed:21773981 ]
  3. Lin Y, Ma C, Liu C, Wang Z, Yang J, Liu X, Shen Z, Wu R: NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget. 2016 May 17;7(20):29454-64. doi: 10.18632/oncotarget.8762. [PubMed:27107423 ]
  4. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  5. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  6. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Early preeclampsia
  1. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
Pregnancy
  1. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
  2. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
  3. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol. 2013 May;208(5):371.e1-8. doi: 10.1016/j.ajog.2012.12.035. Epub 2013 Jan 8. [PubMed:23313728 ]
  4. Bahado-Singh RO, Akolekar R, Chelliah A, Mandal R, Dong E, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013 Jul;209(1):65.e1-9. doi: 10.1016/j.ajog.2013.03.028. Epub 2013 Mar 25. [PubMed:23535240 ]
  5. Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
Late-onset preeclampsia
  1. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
Fumarase deficiency
  1. Allegri G, Fernandes MJ, Scalco FB, Correia P, Simoni RE, Llerena JC Jr, de Oliveira ML: Fumaric aciduria: an overview and the first Brazilian case report. J Inherit Metab Dis. 2010 Aug;33(4):411-9. doi: 10.1007/s10545-010-9134-2. Epub 2010 Jun 15. [PubMed:20549362 ]
N-acetylglutamate synthetase deficiency
  1. Guffon N, Vianey-Saban C, Bourgeois J, Rabier D, Colombo JP, Guibaud P: A new neonatal case of N-acetylglutamate synthase deficiency treated by carbamylglutamate. J Inherit Metab Dis. 1995;18(1):61-5. [PubMed:7623444 ]
  2. Schubiger G, Bachmann C, Barben P, Colombo JP, Tonz O, Schupbach D: N-acetylglutamate synthetase deficiency: diagnosis, management and follow-up of a rare disorder of ammonia detoxication. Eur J Pediatr. 1991 Mar;150(5):353-6. [PubMed:2044610 ]
Obesity
  1. Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U, Peissner W, Wahl S, Grallert H, Adamski J, Illig T, Prehn C, Yu Z, Wang-Sattler R, Koletzko B: Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr. 2015 Mar;54(2):173-81. doi: 10.1007/s00394-014-0698-8. Epub 2014 Apr 17. [PubMed:24740590 ]
  2. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
  3. Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
Glutamine deficiency, congenital
  1. Haberle J, Gorg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Hohne W, Schliess F, Haussinger D, Koch HG: Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med. 2005 Nov 3;353(18):1926-33. [PubMed:16267323 ]
Lipoyltransferase 1 Deficiency
  1. Soreze Y, Boutron A, Habarou F, Barnerias C, Nonnenmacher L, Delpech H, Mamoune A, Chretien D, Hubert L, Bole-Feysot C, Nitschke P, Correia I, Sardet C, Boddaert N, Hamel Y, Delahodde A, Ottolenghi C, de Lonlay P: Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J Rare Dis. 2013 Dec 17;8:192. doi: 10.1186/1750-1172-8-192. [PubMed:24341803 ]
Phosphoenolpyruvate Carboxykinase Deficiency 1, Cytosolic
  1. Vieira P, Cameron J, Rahikkala E, Keski-Filppula R, Zhang LH, Santra S, Matthews A, Myllynen P, Nuutinen M, Moilanen JS, Rodenburg RJ, Rolfs A, Uusimaa J, van Karnebeek CDM: Novel homozygous PCK1 mutation causing cytosolic phosphoenolpyruvate carboxykinase deficiency presenting as childhood hypoglycemia, an abnormal pattern of urine metabolites and liver dysfunction. Mol Genet Metab. 2017 Apr;120(4):337-341. doi: 10.1016/j.ymgme.2017.02.003. Epub 2017 Feb 6. [PubMed:28216384 ]
  2. Santra S, Cameron JM, Shyr C, Zhang L, Drogemoller B, Ross CJ, Wasserman WW, Wevers RA, Rodenburg RJ, Gupte G, Preece MA, van Karnebeek CD: Cytosolic phosphoenolpyruvate carboxykinase deficiency presenting with acute liver failure following gastroenteritis. Mol Genet Metab. 2016 May;118(1):21-7. doi: 10.1016/j.ymgme.2016.03.001. Epub 2016 Mar 4. [PubMed:26971250 ]
Alzheimer's disease
  1. Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4. [PubMed:9693263 ]
  2. Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10. [PubMed:17031479 ]
  3. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Leukemia
  1. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
Propionic acidemia
  1. Scholl-Burgi S, Haberlandt E, Gotwald T, Albrecht U, Baumgartner Sigl S, Rauchenzauner M, Rostasy K, Karall D: Stroke-like episodes in propionic acidemia caused by central focal metabolic decompensation. Neuropediatrics. 2009 Apr;40(2):76-81. doi: 10.1055/s-0029-1231065. Epub 2009 Oct 6. [PubMed:19809936 ]
  2. Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ: Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem. 2008 Dec 1;80(23):9288-97. doi: 10.1021/ac801627c. [PubMed:19551947 ]
Irritable bowel syndrome
  1. Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
  2. Hong YS, Hong KS, Park MH, Ahn YT, Lee JH, Huh CS, Lee J, Kim IK, Hwang GS, Kim JS: Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J Clin Gastroenterol. 2011 May-Jun;45(5):415-25. doi: 10.1097/MCG.0b013e318207f76c. [PubMed:21494186 ]
Ulcerative colitis
  1. Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
  2. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Perillyl alcohol administration for cancer treatment
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
Pancreatic cancer
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
  2. Zhang L, Jin H, Guo X, Yang Z, Zhao L, Tang S, Mo P, Wu K, Nie Y, Pan Y, Fan D: Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by (1)H nuclear magnetic resonance-based metabonomic profiles. Clin Biochem. 2012 Sep;45(13-14):1064-9. doi: 10.1016/j.clinbiochem.2012.05.012. Epub 2012 May 19. [PubMed:22613268 ]
Periodontal disease
  1. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
Frontotemporal dementia
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Lewy body disease
  1. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
Maple syrup urine disease
  1. Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ: Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem. 2008 Dec 1;80(23):9288-97. doi: 10.1021/ac801627c. [PubMed:19551947 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
DrugBank IDDB00130
Phenol Explorer Compound IDNot Available
FooDB IDFDB030965
KNApSAcK IDC00001359
Chemspider ID5746
KEGG Compound IDC00064
BioCyc IDGLN
BiGG ID33714
Wikipedia LinkGlutamine
METLIN ID5614
PubChem Compound5961
PDB IDNot Available
ChEBI ID18050
Food Biomarker OntologyNot Available
VMH IDGLN_L
MarkerDB IDMDB00000205
Good Scents IDNot Available
References
Synthesis ReferenceJiao, Qingcai; Qian, Shaosong; Chen, Ran; Wu, Xiaoyan. Synthesis of L-glutamine. Faming Zhuanli Shenqing Gongkai Shuomingshu (2005), 7 pp.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 32 proteins in total.

Enzymes

General function:
Involved in metabolic process
Specific function:
Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins.
Gene Name:
GFPT2
Uniprot ID:
O94808
Molecular weight:
76929.885
Reactions
Glutamine + Fructose 6-phosphate → Glutamic acid + Glucosamine 6-phosphatedetails
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Hu Y, Riesland L, Paterson AJ, Kudlow JE: Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem. 2004 Jul 16;279(29):29988-93. Epub 2004 May 7. [PubMed:15133036 ]
  4. Zitzler J, Link D, Schafer R, Liebetrau W, Kazinski M, Bonin-Debs A, Behl C, Buckel P, Brinkmann U: High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells: GFPT2 protects cells against peroxide. Mol Cell Proteomics. 2004 Aug;3(8):834-40. Epub 2004 Jun 4. [PubMed:15181156 ]
  5. DeHaven JE, Robinson KA, Nelson BA, Buse MG: A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes. 2001 Nov;50(11):2419-24. [PubMed:11679416 ]
General function:
Involved in metabolic process
Specific function:
Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins.
Gene Name:
GFPT1
Uniprot ID:
Q06210
Molecular weight:
78805.81
Reactions
Glutamine + Fructose 6-phosphate → Glutamic acid + Glucosamine 6-phosphatedetails
General function:
Involved in amidophosphoribosyltransferase activity
Specific function:
Not Available
Gene Name:
PPAT
Uniprot ID:
Q06203
Molecular weight:
57398.52
Reactions
5-Phosphoribosylamine + Pyrophosphate + Glutamic acid → Glutamine + Phosphoribosyl pyrophosphate + Waterdetails
References
  1. Jiang P, Pioszak AA, Ninfa AJ: Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli. Biochemistry. 2007 Apr 3;46(13):4117-32. Epub 2007 Mar 14. [PubMed:17355124 ]
  2. Jiang P, Mayo AE, Ninfa AJ: Escherichia coli glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49): kinetic characterization of regulation by PII, PII-UMP, glutamine, and alpha-ketoglutarate. Biochemistry. 2007 Apr 3;46(13):4133-46. Epub 2007 Mar 14. [PubMed:17355125 ]
General function:
Involved in 1-aminocyclopropane-1-carboxylate synthase activity
Specific function:
Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Metabolizes the cysteine conjugates of certain halogenated alkenes and alkanes to form reactive metabolites. Catalyzes the beta-elimination of S-conjugates and Se-conjugates of L-(seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond.
Gene Name:
CCBL1
Uniprot ID:
Q16773
Molecular weight:
47874.765
Reactions
Glutamine + Phenylpyruvic acid → 2-Keto-glutaramic acid + Phenylalaninedetails
References
  1. Fukushima T, Mitsuhashi S, Tomiya M, Iyo M, Hashimoto K, Toyo'oka T: Determination of kynurenic acid in human serum and its correlation with the concentration of certain amino acids. Clin Chim Acta. 2007 Feb;377(1-2):174-8. Epub 2006 Sep 30. [PubMed:17112493 ]
General function:
Involved in nucleotide binding
Specific function:
Not Available
Gene Name:
QARS
Uniprot ID:
P47897
Molecular weight:
87797.97
Reactions
Adenosine triphosphate + Glutamine + tRNA(Gln) → Adenosine monophosphate + Pyrophosphate + L-glutaminyl-tRNA(Gln)details
Adenosine triphosphate + Glutamine + tRNA(Gln) → Adenosine monophosphate + Pyrophosphate + Glutaminyl-tRNAdetails
References
  1. Balg C, Blais SP, Bernier S, Huot JL, Couture M, Lapointe J, Chenevert R: Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases. Bioorg Med Chem. 2007 Jan 1;15(1):295-304. Epub 2006 Sep 29. [PubMed:17049867 ]
  2. Fuchs BC, Bode BP: Stressing out over survival: glutamine as an apoptotic modulator. J Surg Res. 2006 Mar;131(1):26-40. Epub 2005 Sep 8. [PubMed:16154153 ]
  3. Yamasaki S, Nakamura S, Terada T, Shimizu K: Mechanism of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop. Biophys J. 2007 Jan 1;92(1):192-200. Epub 2006 Oct 6. [PubMed:17028132 ]
  4. Uter NT, Perona JJ: Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit. Biochemistry. 2006 Jun 6;45(22):6858-65. [PubMed:16734422 ]
General function:
Involved in asparagine synthase (glutamine-hydrolyzing) activity
Specific function:
Not Available
Gene Name:
ASNS
Uniprot ID:
P08243
Molecular weight:
62167.855
Reactions
Adenosine triphosphate + L-Aspartic acid + Glutamine + Water → Adenosine monophosphate + Pyrophosphate + L-Asparagine + Glutamic aciddetails
References
  1. Li KK, Beeson WT 4th, Ghiviriga I, Richards NG: A convenient gHMQC-based NMR assay for investigating ammonia channeling in glutamine-dependent amidotransferases: studies of Escherichia coli asparagine synthetase B. Biochemistry. 2007 Apr 24;46(16):4840-9. Epub 2007 Mar 31. [PubMed:17397190 ]
  2. Al Sarraj J, Vinson C, Thiel G: Regulation of asparagine synthetase gene transcription by the basic region leucine zipper transcription factors ATF5 and CHOP. Biol Chem. 2005 Sep;386(9):873-9. [PubMed:16164412 ]
  3. Sheppard K, Akochy PM, Salazar JC, Soll D: The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem. 2007 Apr 20;282(16):11866-73. Epub 2007 Feb 28. [PubMed:17329242 ]
  4. Barsch A, Carvalho HG, Cullimore JV, Niehaus K: GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J Biotechnol. 2006 Dec 15;127(1):79-83. Epub 2006 Jun 21. [PubMed:16870293 ]
  5. Reinert RB, Oberle LM, Wek SA, Bunpo P, Wang XP, Mileva I, Goodwin LO, Aldrich CJ, Durden DL, McNurlan MA, Wek RC, Anthony TG: Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase. J Biol Chem. 2006 Oct 20;281(42):31222-33. Epub 2006 Aug 24. [PubMed:16931516 ]
General function:
Involved in catalytic activity
Specific function:
Involved in the de novo synthesis of guanine nucleotides which are not only essential for DNA and RNA synthesis, but also provide GTP, which is involved in a number of cellular processes important for cell division.
Gene Name:
GMPS
Uniprot ID:
P49915
Molecular weight:
76714.79
Reactions
Adenosine triphosphate + Xanthylic acid + Glutamine + Water → Adenosine monophosphate + Pyrophosphate + Guanosine monophosphate + Glutamic aciddetails
6-Thioxanthine 5'-monophosphate + Adenosine triphosphate + Glutamine + Water → 6-Thioguanosine monophosphate + Adenosine monophosphate + Pyrophosphate + Glutamic aciddetails
References
  1. Strohmeier M, Raschle T, Mazurkiewicz J, Rippe K, Sinning I, Fitzpatrick TB, Tews I: Structure of a bacterial pyridoxal 5'-phosphate synthase complex. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19284-9. Epub 2006 Dec 11. [PubMed:17159152 ]
  2. Myers RS, Amaro RE, Luthey-Schulten ZA, Davisson VJ: Reaction coupling through interdomain contacts in imidazole glycerol phosphate synthase. Biochemistry. 2005 Sep 13;44(36):11974-85. [PubMed:16142895 ]
  3. Neuwirth M, Flicker K, Strohmeier M, Tews I, Macheroux P: Thermodynamic characterization of the protein-protein interaction in the heteromeric Bacillus subtilis pyridoxalphosphate synthase. Biochemistry. 2007 May 1;46(17):5131-9. Epub 2007 Apr 5. [PubMed:17408246 ]
  4. Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I: Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science. 2006 Jun 30;312(5782):1954-8. [PubMed:16809541 ]
General function:
Involved in protein-glutamine gamma-glutamyltransferase activity
Specific function:
Catalyzes the calcium-dependent formation of isopeptide cross-links between glutamine and lysine residues in various proteins, as well as the conjugation of polyamines to proteins. Involved in the formation of the cornified envelope (CE), a specialized component consisting of covalent cross-links of proteins beneath the plasma membrane of terminally differentiated keratinocytes. Catalyzes small proline-rich proteins (SPRR1 and SPRR2) and LOR cross-linking to form small interchain oligomers, which are further cross-linked by TGM1 onto the growing CE scaffold (By similarity). In hair follicles, involved in cross-linking structural proteins to hardening the inner root sheath.
Gene Name:
TGM3
Uniprot ID:
Q08188
Molecular weight:
76631.26
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Chen BS, Wang MR, Xu X, Cai Y, Xu ZX, Han YL, Wu M: Transglutaminase-3, an esophageal cancer-related gene. Int J Cancer. 2000 Dec 15;88(6):862-5. [PubMed:11093806 ]
  4. Ikura K, Yu C, Nagao M, Sasaki R, Furuyoshi S, Kawabata N: Site-directed mutation in conserved anionic regions of guinea pig liver transglutaminase. Arch Biochem Biophys. 1995 Apr 20;318(2):307-13. [PubMed:7733658 ]
  5. Ahvazi B, Steinert PM: A model for the reaction mechanism of the transglutaminase 3 enzyme. Exp Mol Med. 2003 Aug 31;35(4):228-42. [PubMed:14508061 ]
General function:
Involved in protein-glutamine gamma-glutamyltransferase activity
Specific function:
Catalyzes the cross-linking of proteins and the conjugation of polyamines to proteins.
Gene Name:
TGM2
Uniprot ID:
P21980
Molecular weight:
77328.21
References
  1. Park SS, Kim JM, Kim DS, Kim IH, Kim SY: Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J Biol Chem. 2006 Nov 17;281(46):34965-72. Epub 2006 Sep 20. [PubMed:16987813 ]
  2. Keresztessy Z, Csosz E, Harsfalvi J, Csomos K, Gray J, Lightowlers RN, Lakey JH, Balajthy Z, Fesus L: Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci. 2006 Nov;15(11):2466-80. [PubMed:17075129 ]
General function:
Involved in glutamate-ammonia ligase activity
Specific function:
This enzyme has 2 functions: it catalyzes the production of glutamine and 4-aminobutanoate (gamma-aminobutyric acid, GABA), the latter in a pyridoxal phosphate-independent manner (By similarity). Essential for proliferation of fetal skin fibroblasts.
Gene Name:
GLUL
Uniprot ID:
P15104
Molecular weight:
42064.15
Reactions
Adenosine triphosphate + Glutamic acid + Ammonia → ADP + Phosphate + Glutaminedetails
References
  1. Mong JA, Blutstein T: Estradiol modulation of astrocytic form and function: implications for hormonal control of synaptic communication. Neuroscience. 2006;138(3):967-75. Epub 2005 Dec 2. [PubMed:16326016 ]
  2. Rose C, Felipo V: Limited capacity for ammonia removal by brain in chronic liver failure: potential role of nitric oxide. Metab Brain Dis. 2005 Dec;20(4):275-83. [PubMed:16382338 ]
  3. Miguel-Hidalgo JJ: Withdrawal from free-choice ethanol consumption results in increased packing density of glutamine synthetase-immunoreactive astrocytes in the prelimbic cortex of alcohol-preferring rats. Alcohol Alcohol. 2006 Jul-Aug;41(4):379-85. Epub 2006 Feb 16. [PubMed:16484281 ]
  4. Chatauret N, Desjardins P, Zwingmann C, Rose C, Rao KV, Butterworth RF: Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure. J Hepatol. 2006 Jun;44(6):1083-8. Epub 2006 Jan 4. [PubMed:16530878 ]
  5. Tan S, Evans R, Singh B: Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids. 2006 Mar;30(2):195-204. Epub 2006 Mar 20. [PubMed:16547651 ]

Transporters

General function:
Involved in sodium:dicarboxylate symporter activity
Specific function:
Has a broad substrate specificity, a preference for zwitterionic amino acids, and a sodium-dependence. It accepts as substrates all neutral amino acids, including glutamine, asparagine, and branched-chain and aromatic amino acids, and excludes methylated amino acids, anionic amino acids, and cationic amino acids. Act as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus and type D simian retroviruses
Gene Name:
SLC1A5
Uniprot ID:
Q15758
Molecular weight:
56597.6
References
  1. Bungard CI, McGivan JD: Identification of the promoter elements involved in the stimulation of ASCT2 expression by glutamine availability in HepG2 cells and the probable involvement of FXR/RXR dimers. Arch Biochem Biophys. 2005 Nov 15;443(1-2):53-9. Epub 2005 Sep 15. [PubMed:16197915 ]
  2. Gegelashvili M, Rodriguez-Kern A, Pirozhkova I, Zhang J, Sung L, Gegelashvili G: High-affinity glutamate transporter GLAST/EAAT1 regulates cell surface expression of glutamine/neutral amino acid transporter ASCT2 in human fetal astrocytes. Neurochem Int. 2006 May-Jun;48(6-7):611-5. Epub 2006 Mar 3. [PubMed:16516348 ]
  3. Oppedisano F, Pochini L, Galluccio M, Indiveri C: The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport. Biochim Biophys Acta. 2007 Feb;1768(2):291-8. Epub 2006 Sep 16. [PubMed:17046712 ]
  4. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB: Functional and molecular analysis of D-serine transport in retinal Muller cells. Exp Eye Res. 2007 Jan;84(1):191-9. Epub 2006 Nov 13. [PubMed:17094966 ]
  5. McGivan JD, Bungard CI: The transport of glutamine into mammalian cells. Front Biosci. 2007 Jan 1;12:874-82. [PubMed:17127344 ]
General function:
Involved in transport
Specific function:
Sodium-independent, high-affinity transport of small and large neutral amino acids such as alanine, serine, threonine, cysteine, phenylalanine, tyrosine, leucine, arginine and tryptophan, when associated with SLC3A2/4F2hc. Acts as an amino acid exchanger. Has higher affinity for L-phenylalanine than LAT1 but lower affinity for glutamine and serine. L-alanine is transported at physiological concentrations. Plays a role in basolateral (re)absorption of neutral amino acids. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane. Plays an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney
Gene Name:
SLC7A8
Uniprot ID:
Q9UHI5
Molecular weight:
58381.1
References
  1. Umapathy NS, Li W, Mysona BA, Smith SB, Ganapathy V: Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Muller cells. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):3980-7. [PubMed:16249471 ]
  2. Kirchhoff P, Dave MH, Remy C, Kosiek O, Busque SM, Dufner M, Geibel JP, Verrey F, Wagner CA: An amino acid transporter involved in gastric acid secretion. Pflugers Arch. 2006 Mar;451(6):738-48. Epub 2005 Nov 25. [PubMed:16308696 ]
  3. Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F: Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Arch. 2007 Jun;454(3):507-16. Epub 2007 Feb 2. [PubMed:17273864 ]
  4. Broer S, Broer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C: Alanine metabolism, transport, and cycling in the brain. J Neurochem. 2007 Sep;102(6):1758-70. Epub 2007 May 14. [PubMed:17504263 ]
  5. Chubb S, Kingsland AL, Broer A, Broer S: Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction. Mol Membr Biol. 2006 May-Jun;23(3):255-67. [PubMed:16785209 ]
General function:
Amino acid transport and metabolism
Specific function:
Sodium-dependent amino acid/proton antiporter. Mediates electrogenic cotransport of glutamine and sodium ions in exchange for protons. Also recognizes histidine, asparagine and alanine. May mediate amino acid transport in either direction under physiological conditions. May play a role in nitrogen metabolism and synaptic transmission
Gene Name:
SLC38A3
Uniprot ID:
Q99624
Molecular weight:
55772.4
References
  1. Umapathy NS, Li W, Mysona BA, Smith SB, Ganapathy V: Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Muller cells. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):3980-7. [PubMed:16249471 ]
  2. Conti F, Melone M: The glutamine commute: lost in the tube? Neurochem Int. 2006 May-Jun;48(6-7):459-64. Epub 2006 Mar 3. [PubMed:16517023 ]
  3. Gajewski M, Seaver B, Esslinger CS: Design, synthesis, and biological activity of novel triazole amino acids used to probe binding interactions between ligand and neutral amino acid transport protein SN1. Bioorg Med Chem Lett. 2007 Aug 1;17(15):4163-6. Epub 2007 May 23. [PubMed:17561393 ]
General function:
Involved in transmembrane transport
Specific function:
Sodium-independent transporter that mediates the update of aromatic acid. Can function as a net efflux pathway for aromatic amino acids in the basosolateral epithelial cells
Gene Name:
SLC16A10
Uniprot ID:
Q8TF71
Molecular weight:
55492.1
References
  1. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H: Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biol Chem. 2001 May 18;276(20):17221-8. Epub 2001 Feb 20. [PubMed:11278508 ]

Only showing the first 10 proteins. There are 32 proteins in total.