Hmdb loader
Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2009-07-25 00:02:44 UTC
Update Date2022-03-07 02:51:26 UTC
HMDB IDHMDB0012550
Secondary Accession Numbers
  • HMDB12550
Metabolite Identification
Common Name12-Oxo-20-carboxy-leukotriene B4
Description12-oxo-20-carboxy-leukotriene B4 is the metabolite of lipid omega-oxidation of leukotriene B4 (LTB4). LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region, and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by omega-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the omega-carboxy position and after CoA ester formation (PMID: 7649996 , 17623009 , 2853166 , 6088485 ). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Structure
Thumb
Synonyms
ValueSource
(6Z,8E,10E,14Z)-(5S,12R)-12-oxo-5-Hydroxyeicosa-6,8,10,14-tetraen-1,20-dioateHMDB
(6Z,8E,10E,14Z)-(5S,12R)-12-oxo-5-Hydroxyeicosa-6,8,10,14-tetraen-1,20-dioic acidHMDB
12-oxo-20-Carboxy-LTB(,4)HMDB
12-oxo-20-COOH-Leukotriene b(,4)HMDB
12-oxo-20-COOH-LTB(,4)HMDB
Chemical FormulaC20H28O6
Average Molecular Weight364.4327
Monoisotopic Molecular Weight364.188588628
IUPAC Name(5R,6Z,8E,10E,14Z)-5-hydroxy-12-oxoicosa-6,8,10,14-tetraenedioic acid
Traditional Name(5R,6Z,8E,10E,14Z)-5-hydroxy-12-oxoicosa-6,8,10,14-tetraenedioic acid
CAS Registry NumberNot Available
SMILES
O[C@H](CCCC(O)=O)\C=C/C=C/C=C/C(=O)C\C=C/CCCCC(O)=O
InChI Identifier
InChI=1S/C20H28O6/c21-17(11-6-2-1-3-9-15-19(23)24)12-7-4-5-8-13-18(22)14-10-16-20(25)26/h2,4-8,12-13,18,22H,1,3,9-11,14-16H2,(H,23,24)(H,25,26)/b5-4+,6-2-,12-7+,13-8-/t18-/m0/s1
InChI KeyVLMCDTMNMDDMLC-NZXMSVEXSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentLong-chain fatty acids
Alternative Parents
Substituents
  • Long-chain fatty acid
  • Hydroxy fatty acid
  • Keto fatty acid
  • Dicarboxylic acid or derivatives
  • Unsaturated fatty acid
  • Acryloyl-group
  • Enone
  • Alpha,beta-unsaturated ketone
  • Secondary alcohol
  • Ketone
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Organooxygen compound
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB029117
KNApSAcK IDNot Available
Chemspider ID30776624
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53481457
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Wheelan P, Murphy RC: Metabolism of 6-trans-isomers of leukotriene B4 in cultured hepatoma cells and in human polymorphonuclear leukocytes. Identification of a delta 6-reductase metabolic pathway. J Biol Chem. 1995 Aug 25;270(34):19845-52. [PubMed:7649996 ]
  2. Murphy RC, Gijon MA: Biosynthesis and metabolism of leukotrienes. Biochem J. 2007 Aug 1;405(3):379-95. [PubMed:17623009 ]
  3. Mita H, Yui Y, Yasueda H, Shida T: Isocratic determination of arachidonic acid 5-lipoxygenase products in human neutrophils by high-performance liquid chromatography. J Chromatogr. 1988 Sep 9;430(2):299-308. [PubMed:2853166 ]
  4. Shak S, Goldstein IM: Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. J Biol Chem. 1984 Aug 25;259(16):10181-7. [PubMed:6088485 ]
  5. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  6. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  7. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  8. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  9. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.