U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Adrenal hypoplasia

MedGen UID:
337539
Concept ID:
C1846223
Pathologic Function
Synonyms: Adrenal gland hypoplasia; ADRENAL HYPOPLASIA; Hypoplastic adrenal glands
 
HPO: HP:0000835
OMIM®: 240200

Definition

Developmental hypoplasia of the adrenal glands. [from HPO]

Conditions with this feature

Primary adrenocortical insufficiency
MedGen UID:
1324
Concept ID:
C0001403
Disease or Syndrome
Chronic primary adrenal insufficiency (CPAI) is a chronic disorder of the adrenal cortex resulting in the inadequate production of glucocorticoid and mineralocorticoid hormones.
Pallister-Hall syndrome
MedGen UID:
120514
Concept ID:
C0265220
Disease or Syndrome
GLI3-related Pallister-Hall syndrome (GLI3-PHS) is characterized by a spectrum of anomalies ranging from polydactyly, asymptomatic bifid epiglottis, and hypothalamic hamartoma at the mild end to laryngotracheal cleft with neonatal lethality at the severe end. Individuals with mild GLI3-PHS may be incorrectly diagnosed as having isolated postaxial polydactyly type A. Individuals with GLI3-PHS can have pituitary insufficiency and may die as neonates from undiagnosed and untreated adrenal insufficiency.
Child syndrome
MedGen UID:
82697
Concept ID:
C0265267
Disease or Syndrome
The NSDHL-related disorders include: CHILD (congenital hemidysplasia with ichthyosiform nevus and limb defects) syndrome, an X-linked condition that is usually male lethal during gestation and thus predominantly affects females; and CK syndrome, an X-linked disorder that affects males. CHILD syndrome is characterized by unilateral distribution of ichthyosiform (yellow scaly) skin lesions and ipsilateral limb defects that range from shortening of the metacarpals and phalanges to absence of the entire limb. Intellect is usually normal. The ichthyosiform skin lesions are usually present at birth or in the first weeks of life; new lesions can develop in later life. Nail changes are also common. The heart, lung, and kidneys can also be involved. CK syndrome (named for the initials of the original proband) is characterized by mild to severe cognitive impairment and behavior problems (aggression, attention deficit hyperactivity disorder, and irritability). All affected males reported have developed seizures in infancy and have cerebral cortical malformations and microcephaly. All have distinctive facial features, a thin habitus, and relatively long, thin fingers and toes. Some have scoliosis and kyphosis. Strabismus is common. Optic atrophy is also reported.
Holoprosencephaly 1
MedGen UID:
78617
Concept ID:
C0266667
Congenital Abnormality
Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain and occurs after failed or abbreviated midline cleavage of the developing brain during the third and fourth weeks of gestation. HPE occurs in up to 1 in 250 gestations, but only 1 in 8,000 live births (Lacbawan et al., 2009). Classically, 3 degrees of severity defined by the extent of brain malformation have been described. In the most severe form, 'alobar HPE,' there is a single ventricle and no interhemispheric fissure. The olfactory bulbs and tracts and the corpus callosum are typically absent. In 'semilobar HPE,' the most common type of HPE in neonates who survive, there is partial cortical separation with rudimentary cerebral hemispheres and a single ventricle. In 'lobar HPE,' the ventricles are separated, but there is incomplete frontal cortical separation (Corsello et al., 1990). An additional milder form, called 'middle interhemispheric variant' (MIHV) has also been delineated, in which the posterior frontal and parietal lobes are incompletely separated and the corpus callosum may be hypoplastic (Lacbawan et al., 2009). Finally, microforms of HPE include a single maxillary median incisor or hypotelorism without the typical brain malformations (summary by Mercier et al., 2011). Cohen (2001) discussed problems in the definition of holoprosencephaly, which can be viewed from 2 different perspectives: anatomic (fixed) and genetic (broad). When the main interest is description, the anatomic perspective is appropriate. In genetic perspective, a fixed definition of holoprosencephaly is not appropriate because the same mutational cause may result in either holoprosencephaly or some microform of holoprosencephaly. Cohen (2001) concluded that both fixed and broad definitions are equally valid and depend on context. Munke (1989) provided an extensive review of the etiology and pathogenesis of holoprosencephaly, emphasizing heterogeneity. See also schizencephaly (269160), which may be part of the phenotypic spectrum of HPE. Genetic Heterogeneity of Holoprosencephaly Several loci for holoprosencephaly have been mapped to specific chromosomal sites and the molecular defects in some cases of HPE have been identified. Holoprosencephaly-1 (HPE1) maps to chromosome 21q22. See also HPE2 (157170), caused by mutation in the SIX3 gene (603714) on 2p21; HPE3 (142945), caused by mutation in the SHH gene (600725) on 7q36; HPE4 (142946), caused by mutation in the TGIF gene (602630) on 18p11; HPE5 (609637), caused by mutation in the ZIC2 gene (603073) on 13q32; HPE6 (605934), mapped to 2q37; HPE7 (610828), caused by mutation in the PTCH1 gene (601309) on 9q22; HPE8 (609408), mapped to 14q13; HPE9 (610829), caused by mutation in the GLI2 gene (165230) on 2q14; HPE10 (612530), mapped to 1q41-q42; HPE11 (614226), caused by mutation in the CDON gene (608707) on 11q24; HPE12 (618500), caused by mutation in the CNOT1 gene (604917) on 16q21; HPE13 (301043), caused by mutation in the STAG2 gene (300826) on Xq25; and HPE14 (619895), caused by mutation in the PLCH1 gene (612835) on 3q25. Wallis and Muenke (2000) gave an overview of mutations in holoprosencephaly. They indicated that at least 12 different loci had been associated with HPE. Mutations in genes involved in the multiprotein cohesin complex, including STAG2, have been shown to be involved in midline brain defects such as HPE. Mutations in some of those genes cause Cornelia de Lange syndrome (CDLS; see 122470), and some patients with severe forms of CDLS may have midline brain defects. See, for example, CDLS2 (300590), CDLS3 (610759), and CDLS4 (614701).
Congenital isolated adrenocorticotropic hormone deficiency
MedGen UID:
137968
Concept ID:
C0342388
Disease or Syndrome
Congenital isolated adrenocorticotropic hormone deficiency (IAD) is characterized by severe hypoglycemia in the neonatal period, associated with seizures in about half of cases, prolonged cholestatic jaundice, and very low plasma ACTH levels with no significant response to corticotropin-releasing hormone (CRH; 122560). Plasma cortisol levels are also extremely low (Vallette-Kasic et al., 2005). TBX19 is required for initiation of transcription of the POMC gene (176830), which produces the precursor peptide from which ACTH is derived (Lamolet et al., 2001).
Congenital adrenal hypoplasia, X-linked
MedGen UID:
87442
Concept ID:
C0342482
Disease or Syndrome
NR0B1-related adrenal hypoplasia congenita includes both X-linked adrenal hypoplasia congenita (X-linked AHC) and Xp21 deletion (previously called complex glycerol kinase deficiency). X-linked AHC is characterized by primary adrenal insufficiency and/or hypogonadotropic hypogonadism (HH). Adrenal insufficiency is acute infantile onset (average age 3 weeks) in approximately 60% of affected males and childhood onset (ages 1-9 years) in approximately 40%. HH typically manifests in a male with adrenal insufficiency as delayed puberty (i.e., onset age >14 years) and less commonly as arrested puberty at about Tanner Stage 3. Rarely, X-linked AHC manifests initially in early adulthood as delayed-onset adrenal insufficiency, partial HH, and/or infertility. Heterozygous females very occasionally have manifestations of adrenal insufficiency or hypogonadotropic hypogonadism. Xp21 deletion includes deletion of NR0B1 (causing X-linked AHC) and GK (causing glycerol kinase deficiency), and in some cases deletion of DMD (causing Duchenne muscular dystrophy). Developmental delay has been reported in males with Xp21 deletion when the deletion extends proximally to include DMD or when larger deletions extend distally to include IL1RAPL1 and DMD.
Holoprosencephaly 2
MedGen UID:
322517
Concept ID:
C1834877
Disease or Syndrome
A rare disorder characterized by the partial separation of the cerebral hemispheres. It is associated with mutations in the SIX3 gene.
IMAGe syndrome
MedGen UID:
337364
Concept ID:
C1846009
Disease or Syndrome
IMAGe syndrome is an acronym for the major findings of intrauterine growth restriction (IUGR), metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary abnormalities (in males). Findings reported in individuals with a clinical and/or molecular diagnosis include: IUGR; Some type of skeletal abnormality (most commonly delayed bone age and short stature, and occasionally, metaphyseal and epiphyseal dysplasia of varying severity); Adrenal insufficiency often presenting in the first month of life as an adrenal crisis or (rarely) later in childhood with failure to thrive and recurrent vomiting; Genital abnormalities in males (cryptorchidism, micropenis, and hypospadias) but not in females. Hypotonia and developmental delay are reported in some individuals; cognitive outcome appears to be normal in the majority of individuals.
Holoprosencephaly-postaxial polydactyly syndrome
MedGen UID:
340382
Concept ID:
C1849649
Disease or Syndrome
Holoprosencephaly-postaxial polydactyly syndrome associates, in chromosomally normal neonates, holoprosencephaly, severe facial dysmorphism, postaxial polydactyly and other congenital abnormalities, suggestive of trisomy 13. Incidence is unknown. Dysmorphic features include hypotelorism, severe eye anomalies such as microphthalmia or anophthalmia, premaxillary region aplasia and cleft lip and palate. Congenital cardiac anomalies are common. The condition seems to be inherited as an autosomal recessive trait. Prognosis is poor.
Obesity due to pro-opiomelanocortin deficiency
MedGen UID:
341863
Concept ID:
C1857854
Disease or Syndrome
OBAIRH is an autosomal recessive endocrine disorder characterized by early-onset obesity due to severe hyperphagia, pigmentary abnormalities, mainly pale skin and red hair, and secondary hypocortisolism. In the neonatal period, affected individuals are prone to hypoglycemia, hyperbilirubinemia, and cholestasis that may result in death if not treated. The disorder results from mutation in the POMC gene, which encodes a preproprotein that is processed into a range of bioactive peptides, including alpha-melanocyte-stimulating hormone (MSH) and ACTH (summary by Kuhnen et al., 2016 and Clement et al., 2008).
Microphthalmia with brain and digit anomalies
MedGen UID:
355268
Concept ID:
C1864689
Disease or Syndrome
This syndrome has characteristics of anophthalmia or microphthalmia, retinal dystrophy, and/or myopia, associated in some cases with cerebral anomalies. It has been described in two families. Polydactyly may also be present. Linkage analysis allowed identification of mutations in the BMP4 gene, which has already been shown to play a role in eye development.
Endocrine-cerebro-osteodysplasia syndrome
MedGen UID:
390740
Concept ID:
C2675227
Disease or Syndrome
Endocrine-cerebro-osteodysplasia (ECO) syndrome is characterized by various anomalies of the endocrine, cerebral, and skeletal systems resulting in neonatal mortality.
Cutis laxa with severe pulmonary, gastrointestinal and urinary anomalies
MedGen UID:
442566
Concept ID:
C2750804
Disease or Syndrome
LTBP4-related cutis laxa is characterized by cutis laxa, early childhood-onset pulmonary emphysema, peripheral pulmonary artery stenosis, and other evidence of a generalized connective tissue disorder such as inguinal hernias and hollow visceral diverticula (e.g., intestine, bladder). Other manifestations can include pyloric stenosis, diaphragmatic hernia, rectal prolapse, gastrointestinal elongation/tortuosity, cardiovascular abnormality, pulmonary hypertension, hypotonia and frequent pulmonary infections. Bladder diverticula and hydronephrosis are common. Early demise has been associated with pulmonary emphysema.
Meckel syndrome, type 1
MedGen UID:
811346
Concept ID:
C3714506
Disease or Syndrome
Meckel syndrome, also known as Meckel-Gruber syndrome, is a severe pleiotropic autosomal recessive developmental disorder caused by dysfunction of primary cilia during early embryogenesis. There is extensive clinical variability and controversy as to the minimum diagnostic criteria. Early reports, including that of Opitz and Howe (1969) and Wright et al. (1994), stated that the classic triad of Meckel syndrome comprises (1) cystic renal disease; (2) a central nervous system malformation, most commonly occipital encephalocele; and (3) polydactyly, most often postaxial. However, based on a study of 67 patients, Salonen (1984) concluded that the minimum diagnostic criteria are (1) cystic renal disease; (2) CNS malformation, and (3) hepatic abnormalities, including portal fibrosis or ductal proliferation. In a review of Meckel syndrome, Logan et al. (2011) stated that the classic triad first described by Meckel (1822) included occipital encephalocele, cystic kidneys, and fibrotic changes to the liver. Genetic Heterogeneity of Meckel Syndrome See also MKS2 (603194), caused by mutation in the TMEM216 gene (613277) on chromosome 11q12; MKS3 (607361), caused by mutation in the TMEM67 gene (609884) on chromosome 8q; MKS4 (611134), caused by mutation in the CEP290 gene (610142) on chromosome 12q; MKS5 (611561), caused by mutation in the RPGRIP1L gene (610937) on chromosome 16q12; MKS6 (612284), caused by mutation in the CC2D2A gene (612013) on chromosome 4p15; MKS7 (267010), caused by mutation in the NPHP3 (608002) gene on chromosome 3q22; MKS8 (613885), caused by mutation in the TCTN2 gene (613846) on chromosome 12q24; MKS9 (614209), caused by mutation in the B9D1 gene (614144) on chromosome 17p11; MKS10 (614175), caused by mutation in the B9D2 gene (611951) on chromosome 19q13; MKS11 (615397), caused by mutation in the TMEM231 gene (614949) on chromosome 16q23; MKS12 (616258), caused by mutation in the KIF14 gene (611279) on chromosome 1q32; MKS13 (617562), caused by mutation in the TMEM107 gene (616183) on chromosome 17p13; and MKS14 (619879), caused by mutation in the TXNDC15 gene (617778) on chromosome 5q31.
MIRAGE syndrome
MedGen UID:
924576
Concept ID:
C4284088
Disease or Syndrome
MIRAGE syndrome is an acronym for the major findings of myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. Cytopenias are typically seen soon after birth; thrombocytopenia is the most common followed by anemia and pancytopenia. Recurrent infections from early infancy include pneumonia, urinary tract infection, gastroenteritis, meningitis, otitis media, dermatitis, subcutaneous abscess, and sepsis. Reported genital phenotypes in those with 46,XY karyotype included hypospadias, microphallus, bifid shawl scrotum, ambiguous genitalia, or complete female genitalia. Hypoplastic or dysgenetic ovaries have been reported in females. Gastrointestinal complications include chronic diarrhea and esophageal dysfunction. Moderate-to-severe developmental delay is reported in most affected individuals. Autonomic dysfunction and renal dysfunction are also reported.
Ritscher-Schinzel syndrome 1
MedGen UID:
1634646
Concept ID:
C4551776
Disease or Syndrome
Ritscher-Schinzel syndrome (RSS) is a clinically recognizable condition that includes the cardinal findings of craniofacial features, cerebellar defects, and cardiovascular malformations resulting in the alternate diagnostic name of 3C syndrome. Dysmorphic facial features may include brachycephaly, hypotonic face with protruding tongue, flat appearance of the face on profile view, short midface, widely spaced eyes, downslanted palpebral fissures, low-set ears with overfolding of the upper helix, smooth or short philtrum, and high or cleft palate. Affected individuals also typically have a characteristic metacarpal phalangeal profile showing a consistent wavy pattern on hand radiographs. RSS is associated with variable degrees of developmental delay and intellectual disability. Eye anomalies and hypercholesterolemia may be variably present.
Peroxisome biogenesis disorder 1A (Zellweger)
MedGen UID:
1648474
Concept ID:
C4721541
Disease or Syndrome
Zellweger spectrum disorder (ZSD) is a phenotypic continuum ranging from severe to mild. While individual phenotypes (e.g., Zellweger syndrome [ZS], neonatal adrenoleukodystrophy [NALD], and infantile Refsum disease [IRD]) were described in the past before the biochemical and molecular bases of this spectrum were fully determined, the term "ZSD" is now used to refer to all individuals with a defect in one of the ZSD-PEX genes regardless of phenotype. Individuals with ZSD usually come to clinical attention in the newborn period or later in childhood. Affected newborns are hypotonic and feed poorly. They have distinctive facies, congenital malformations (neuronal migration defects associated with neonatal-onset seizures, renal cysts, and bony stippling [chondrodysplasia punctata] of the patella[e] and the long bones), and liver disease that can be severe. Infants with severe ZSD are significantly impaired and typically die during the first year of life, usually having made no developmental progress. Individuals with intermediate/milder ZSD do not have congenital malformations, but rather progressive peroxisome dysfunction variably manifest as sensory loss (secondary to retinal dystrophy and sensorineural hearing loss), neurologic involvement (ataxia, polyneuropathy, and leukodystrophy), liver dysfunction, adrenal insufficiency, and renal oxalate stones. While hypotonia and developmental delays are typical, intellect can be normal. Some have osteopenia; almost all have ameleogenesis imperfecta in the secondary teeth.
Hydrops fetalis, nonimmune, with gracile bones and dysmorphic features
MedGen UID:
1677588
Concept ID:
C5193233
Disease or Syndrome
AMED syndrome, digenic
MedGen UID:
1754257
Concept ID:
C5436906
Disease or Syndrome
AMED syndrome (AMEDS) is an autosomal recessive digenic multisystem disorder characterized by global developmental delay with impaired intellectual development, onset of bone marrow failure and myelodysplastic syndrome (MDS) in childhood, and poor overall growth with short stature (summary by Oka et al., 2020). For a discussion of genetic heterogeneity of bone marrow failure syndrome (BMFS), see BMFS1 (614675).
Restrictive dermopathy 1
MedGen UID:
1812447
Concept ID:
C5676878
Disease or Syndrome
A restrictive dermopathy that has material basis in homozygous or compound heterozygous mutation in the ZMPSTE24 gene on chromosome 1p34.

Professional guidelines

PubMed

Yogi A, Kashimada K
Endocr J 2023 Oct 30;70(10):945-957. Epub 2023 Jun 29 doi: 10.1507/endocrj.EJ23-0075. PMID: 37380491
Çamtosun E, Dündar İ, Akıncı A, Kayaş L, Çiftci N
J Clin Res Pediatr Endocrinol 2021 Feb 26;13(1):88-99. Epub 2020 Sep 17 doi: 10.4274/jcrpe.galenos.2020.2020.0132. PMID: 32938577Free PMC Article
Savage MO, Lebrethon MC, Blair JC, Ho JT, Johnston LB, Lienhardt A, Clark AJ, Chaussain JL
Horm Res 2001;56 Suppl 1:19-23. doi: 10.1159/000048129. PMID: 11786680

Recent clinical studies

Etiology

Lee SC, Baranowski ES, Sakremath R, Saraff V, Mohamed Z
Front Endocrinol (Lausanne) 2023;14:1198519. Epub 2023 Nov 20 doi: 10.3389/fendo.2023.1198519. PMID: 38053731Free PMC Article
Gupta P, Sharma R, Jain V
Indian J Pediatr 2022 Jun;89(6):587-590. Epub 2022 Mar 1 doi: 10.1007/s12098-021-04055-2. PMID: 35230670
Eyal O, Levin Y, Oren A, Zung A, Rachmiel M, Landau Z, Schachter-Davidov A, Segev-Becker A, Weintrob N
Eur J Pediatr 2019 May;178(5):731-738. Epub 2019 Feb 26 doi: 10.1007/s00431-019-03348-1. PMID: 30806790
Jadhav U, Harris RM, Jameson JL
Mol Cell Endocrinol 2011 Oct 22;346(1-2):65-73. Epub 2011 Jun 13 doi: 10.1016/j.mce.2011.04.017. PMID: 21672607Free PMC Article
Ferraz-de-Souza B, Achermann JC
Endocr Dev 2008;13:19-32. doi: 10.1159/000134753. PMID: 18493131

Diagnosis

Lee SC, Baranowski ES, Sakremath R, Saraff V, Mohamed Z
Front Endocrinol (Lausanne) 2023;14:1198519. Epub 2023 Nov 20 doi: 10.3389/fendo.2023.1198519. PMID: 38053731Free PMC Article
Viaene AN, Harding BN
J Neuropathol Exp Neurol 2020 Apr 1;79(4):458-462. doi: 10.1093/jnen/nlaa009. PMID: 32106287
Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC
Best Pract Res Clin Endocrinol Metab 2015 Aug;29(4):607-19. Epub 2015 Jul 14 doi: 10.1016/j.beem.2015.07.004. PMID: 26303087Free PMC Article
Ferraz-de-Souza B, Achermann JC
Endocr Dev 2008;13:19-32. doi: 10.1159/000134753. PMID: 18493131
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article

Therapy

Lee SC, Baranowski ES, Sakremath R, Saraff V, Mohamed Z
Front Endocrinol (Lausanne) 2023;14:1198519. Epub 2023 Nov 20 doi: 10.3389/fendo.2023.1198519. PMID: 38053731Free PMC Article
Yogi A, Kashimada K
Endocr J 2023 Oct 30;70(10):945-957. Epub 2023 Jun 29 doi: 10.1507/endocrj.EJ23-0075. PMID: 37380491
Al Amer AM, Al Rubaya KM, Alzahrani AS
Saudi Med J 2019 Jan;40(1):87-92. doi: 10.15537/smj.2019.1.23337. PMID: 30617386Free PMC Article
Ravel C, Hyon C, Siffroi JP, Christin-Maitre S
Ann Endocrinol (Paris) 2014 May;75(2):126-7. Epub 2014 Apr 21 doi: 10.1016/j.ando.2014.03.003. PMID: 24751136
Kasar PA, Khadilkar VV, Tibrewala VN
Indian J Pediatr 2007 Oct;74(10):959-61. doi: 10.1007/s12098-007-0179-7. PMID: 17978460

Prognosis

Eyal O, Levin Y, Oren A, Zung A, Rachmiel M, Landau Z, Schachter-Davidov A, Segev-Becker A, Weintrob N
Eur J Pediatr 2019 May;178(5):731-738. Epub 2019 Feb 26 doi: 10.1007/s00431-019-03348-1. PMID: 30806790
Stratakis CA
Mol Cell Endocrinol 2009 Mar 5;300(1-2):152-7. Epub 2008 Nov 21 doi: 10.1016/j.mce.2008.11.010. PMID: 19063937Free PMC Article
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article
Fujieda K, Okuhara K, Abe S, Tajima T, Mukai T, Nakae J
J Steroid Biochem Mol Biol 2003 Jun;85(2-5):483-9. doi: 10.1016/s0960-0760(03)00232-2. PMID: 12943739
Klatt EC, Pysher TJ, Pavlova Z
Pediatr Dev Pathol 1998 Nov-Dec;1(6):475-9. doi: 10.1007/s100249900065. PMID: 9724333

Clinical prediction guides

Viaene AN, Harding BN
J Neuropathol Exp Neurol 2020 Apr 1;79(4):458-462. doi: 10.1093/jnen/nlaa009. PMID: 32106287
Eyal O, Levin Y, Oren A, Zung A, Rachmiel M, Landau Z, Schachter-Davidov A, Segev-Becker A, Weintrob N
Eur J Pediatr 2019 May;178(5):731-738. Epub 2019 Feb 26 doi: 10.1007/s00431-019-03348-1. PMID: 30806790
Dubourg C, Bendavid C, Pasquier L, Henry C, Odent S, David V
Orphanet J Rare Dis 2007 Feb 2;2:8. doi: 10.1186/1750-1172-2-8. PMID: 17274816Free PMC Article
Fujieda K, Okuhara K, Abe S, Tajima T, Mukai T, Nakae J
J Steroid Biochem Mol Biol 2003 Jun;85(2-5):483-9. doi: 10.1016/s0960-0760(03)00232-2. PMID: 12943739
Zanaria E, Bardoni B, Dabovic B, Calvari V, Fraccaro M, Zuffardi O, Camerino G
Philos Trans R Soc Lond B Biol Sci 1995 Nov 29;350(1333):291-6. doi: 10.1098/rstb.1995.0164. PMID: 8570694

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Consumer resources

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...