Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline N-formyl-L-glutamate Identifier CHEBI:17684 Charge -2 Formula C6H7NO5 InChIKeyhelp_outline ADZLWSMFHHHOBV-BYPYZUCNSA-L SMILEShelp_outline [H]C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 99 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 247 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12476 | RHEA:12477 | RHEA:12478 | RHEA:12479 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A beta-citryl-L-glutamate-hydrolysing enzyme in rat testes.
Miyake M., Innami T., Kakimoto Y.
An enzyme responsible for the deacylation of beta-citryl-L-glutamate to citrate and glutamate has been characterized in rat testis. The enzyme required manganese ion for full activity and was strongly inhibited by nucleotides such as ATP or GTP. The activity was localized in the particulate fracti ... >> More
An enzyme responsible for the deacylation of beta-citryl-L-glutamate to citrate and glutamate has been characterized in rat testis. The enzyme required manganese ion for full activity and was strongly inhibited by nucleotides such as ATP or GTP. The activity was localized in the particulate fractions. The enzyme favored N-formyl-L-glutamate greater than beta-citrly-L-glutamate greater than beta-citryl-L-glutamine in a decreasing order. The amidohydrolyase activity was highest in the testis and lung, a moderate activity was detected in heart, kidney and intestine, and low in brain, thymus, stomach, skeletal muscle, spleen and liver. These findings suggest that the amidohydrolase is different from any of amidohydrolases reported so far, amidohydrolase I (EC 3.5.1.14), II (EC 3.5.1.15), III, N-acetyl-lysine deacylase (EC 3.5.1.17) and N-acetyl-beta-alanine deacetylase (EC 3.5.1.21), and various peptidases. << Less
-
Purification and properties of formylglutamate amidohydrolase from Pseudomonas putida.
Hu L., Mulfinger L.M., Phillips A.T.
Formylglutamate amidohydrolase (FGase) catalyzes the terminal reaction in the five-step pathway for histidine utilization in Pseudomonas putida. By this action, N-formyl-L-glutamate (FG) is hydrolyzed to produce L-glutamate plus formate. Urocanate, the first product in the pathway, induced all fiv ... >> More
Formylglutamate amidohydrolase (FGase) catalyzes the terminal reaction in the five-step pathway for histidine utilization in Pseudomonas putida. By this action, N-formyl-L-glutamate (FG) is hydrolyzed to produce L-glutamate plus formate. Urocanate, the first product in the pathway, induced all five enzymes, but FG was able to induce FGase alone, although less efficiently than urocanate did. This induction by FG resulted in the formation of an FGase with electrophoretic mobility identical to that of the FGase induced by urocanate. A 9.6-kilobase-pair HindIII DNA fragment containing the P. putida FGase gene was cloned into the corresponding site on plasmid pBEU1 maintained in Escherichia coli. Insertion of the fragment in either orientation on the vector resulted in expression, but a higher level was noted in one direction, suggesting that the FGase gene can be expressed from either of two vector promoters with different efficiencies or from a single vector promoter in addition to a less efficient Pseudomonas promoter. FGase was purified 1,110-fold from the higher-expression clone in a yield of 10% through six steps. Divalent metal ions stimulated activity, and among those tested (Co, Fe, Zn, Ca, Ni, Cd, Mn, and Mg), Co(II) was the best activator, followed by Fe(II). FGase exhibited a Km of 14 mM for FG and a specific activity of 100 mumol/min per mg of protein in the presence of 5 mM substrate and 0.8 mM CoCl2 at 30 degrees C. The enzyme was maximally active in the range of pH 7 to 8. FGase was found to be a monomer of molecular weight 50,000. N-Acetyl-L-glutamate was not a substrate for the enzyme, but both it and N-formyl-L-aspartate were competitive inhibitors of formylglutamate hydrolysis, exhibiting Ki values of 6 and 9 mM, respectively. The absence of FGase activity as an integral part of histidine breakdown in most other organisms and the somewhat uncoordinated regulation of FGase synthesis with that of the other hut enzymes in Pseudomonas suggest that the gene encoding its synthesis may have evolved separately from the remaining hut genes. << Less