Enzymes
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline tyramine Identifier CHEBI:327995 Charge 1 Formula C8H12NO InChIKeyhelp_outline DZGWFCGJZKJUFP-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CCc1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 924 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-methyltyramine Identifier CHEBI:58155 Charge 1 Formula C9H14NO InChIKeyhelp_outline AXVZFRBSCNEKPQ-UHFFFAOYSA-O SMILEShelp_outline C[NH2+]CCc1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 840 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:14865 | RHEA:14866 | RHEA:14867 | RHEA:14868 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The biosynthetic pathway of the hallucinogen mescaline and its heterologous reconstruction.
Berman P., de Haro L.A., Cavaco A.R., Panda S., Dong Y., Kuzmich N., Lichtenstein G., Peleg Y., Harat H., Jozwiak A., Cai J., Heinig U., Meir S., Rogachev I., Aharoni A.
Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. In this st ... >> More
Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. In this study, we investigated the cactus Lophophora williamsii (Peyote), the largest known natural producer of the phenethylamine mescaline. We employed a multi-faceted approach, combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling, enzymatic assays, molecular modeling, and pathway engineering for pathway elucidation. We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway, and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates, likely modulating mescaline levels in Peyote. Finally, we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells, providing novel insights into several challenges hindering complete heterologous mescaline production. Taken together, our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline, safeguarding this valuable natural resource for future generations. << Less
Mol Plant 17:1129-1150(2024) [PubMed] [EuropePMC]
This publication is cited by 25 other entries.
Comments
Published in: Mann, J.D. and Mudd, S.H. Alkaloids and plant metabolism. IV. The tyramine methylpherase of barley roots. J. Biol. Chem. 238 (1963) 381–385.