Reaction participants Show >> << Hide
- Name help_outline L-ascorbate Identifier CHEBI:38290 (Beilstein: 3549814; CAS: 299-36-5) help_outline Charge -1 Formula C6H7O6 InChIKeyhelp_outline CIWBSHSKHKDKBQ-JLAZNSOCSA-M SMILEShelp_outline [H][C@@]1(OC(=O)C(O)=C1[O-])[C@@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(III)-[cytochrome c]
Identifier
RHEA-COMP:14399
Reactive part
help_outline
- Name help_outline Fe3+ Identifier CHEBI:29034 (CAS: 20074-52-6) help_outline Charge 3 Formula Fe InChIKeyhelp_outline VTLYFUHAOXGGBS-UHFFFAOYSA-N SMILEShelp_outline [Fe+3] 2D coordinates Mol file for the small molecule Search links Involved in 253 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-dehydroascorbate Identifier CHEBI:58539 Charge -1 Formula C6H5O6 InChIKeyhelp_outline OESHPIGALOBJLM-REOHCLBHSA-N SMILEShelp_outline OC[C@H](O)[C-]1OC(=O)C(=O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-[cytochrome c]
Identifier
RHEA-COMP:10350
Reactive part
help_outline
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 266 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15849 | RHEA:15850 | RHEA:15851 | RHEA:15852 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Biological synthesis of L-ascorbic acid: the conversion of L-galactono-gamma-lactone into L-ascorbic acid by plant mitochondria.
MAPSON L.W., ISHERWOOD F.A., CHEN Y.T.
Biochem J 56:21-28(1954) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast.
Oestergaard J., Persiau G., Davey M.W., Bauw G., Van Montagu M.
L-Galactono-gamma-lactone dehydrogenase (EC 1.3.2.3; GLDase), an enzyme that catalyzes the final step in the biosynthesis of L-ascorbic acid was purified 1693-fold from a mitochondrial extract of cauliflower (Brassica oleracea, var. botrytis) to apparent homogeneity with an overall yield of 1.1%. ... >> More
L-Galactono-gamma-lactone dehydrogenase (EC 1.3.2.3; GLDase), an enzyme that catalyzes the final step in the biosynthesis of L-ascorbic acid was purified 1693-fold from a mitochondrial extract of cauliflower (Brassica oleracea, var. botrytis) to apparent homogeneity with an overall yield of 1.1%. The purification procedure consisted of anion exchange, hydrophobic interaction, gel filtration, and fast protein liquid chromatography. The enzyme had a molecular mass of 56 kDa estimated by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis and showed a pH optimum for activity between pH 8.0 and 8.5, with an apparent Km of 3.3 mM for L-galactono-gamma-lactone. Based on partial peptide sequence information, polymerase chain reaction fragments were isolated and used to screen a cauliflower cDNA library from which a cDNA encoding GLDase was isolated. The deduced mature GLDase contained 509 amino acid residues with a predicted molecular mass of 57,837 Da. Expression of the cDNA in yeast produced a biologically active protein displaying GLDase activity. Furthermore, we identified a substrate for the enzyme in cauliflower extract, which co-eluted with L-galactono-gamma-lactone by high-performance liquid chromatography, suggesting that this compound is a naturally occurring precursor of L-ascorbic acid biosynthesis in vivo. << Less
J. Biol. Chem. 272:30009-30016(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Synthesis of L-ascorbic acid in plants and animals.
ISHERWOOD F.A., CHEN Y.T., MAPSON L.W.
Biochem J 56:1-15(1954) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Purification and properties of L-galactono-gamma-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots.
Oba K., Ishikawa S., Nishikawa M., Mizuno H., Yamamoto T.
L-Galactono-gamma-lactone dehydrogenase (L-galactono-gamma-lactone:ferricytochrome c oxidoreductase [EC 1.3.2.3], GLDHase) which catalyzes the terminal step in the biosynthesis of L-ascorbic acid (AsA) has been purified from roots of sweet potato (Ipomoea batatas L., cv. Kintoki). Highly purified ... >> More
L-Galactono-gamma-lactone dehydrogenase (L-galactono-gamma-lactone:ferricytochrome c oxidoreductase [EC 1.3.2.3], GLDHase) which catalyzes the terminal step in the biosynthesis of L-ascorbic acid (AsA) has been purified from roots of sweet potato (Ipomoea batatas L., cv. Kintoki). Highly purified preparation of the GLDHase was obtained by three column chromatography steps with a recovery of ca. 1%, after solubilization from mitochondria in sweet potato roots. SDS-PAGE exhibited a single band at 56 kDa. In the native state, the apparent molecular mass of the enzyme was 56 kDa, based on a Sephadex G-100 gel filtration. The pI and optimum pH values were 5.8 and 7.9, respectively. The Km value for L-galactono-gamma-lactone was 0.12 mM. Substrate inhibition was obtained at concentrations greater than 4.2 mM. The enzyme was inhibited by p-chloromercuribenzoate (PCMB) and acriflavine, and the inhibition of acriflavine was diminished by the addition of FAD or FMN. The only effective substrate for the GLDHase was L-galactono-gamma-lactone. << Less
J Biochem 117:120-124(1995) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
Spontaneous reaction.